K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2017

chẳng nhìn thấy j cả!oho Thông cảm mk bị cận!gianroi

12 tháng 3 2017

thiếu đề

2 tháng 3 2017

Ta có: \(\left|x-1\right|+\left|x-5\right|=\left|x-1\right|+\left|5-x\right|\)

Nhận thấy: \(\left[{}\begin{matrix}\left|x-1\right|\ge x-1\\\left|5-x\right|\ge5-x\end{matrix}\right.\)

\(\Rightarrow\left|x-1\right|+\left|5-x\right|\ge x-1+5-x\)

\(\Rightarrow\left|x-1\right|+\left|5-x\right|\ge4\)

Dấu \("="\) xảy ra khi:

\(\left[{}\begin{matrix}x-1\ge0\\5-x\ge0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x\ge1\\x\le5\end{matrix}\right.\) \(\Rightarrow1\le x\le5\)

Vậy \(1\le x\le5.\)

2 tháng 3 2017

Cho mk thêm cái ạ:

\(x\in\left\{1;2;3;4;5\right\}\)

Vậy \(x\in\left\{1;2;3;4;5\right\}\)

1 tháng 3 2017

đề sai sailimdim

1 tháng 3 2017

Từ \(\dfrac{9x}{4}\)=\(\dfrac{16}{x}\)

9x\(^2\)=4*16=69

=>x\(^2\)=69/9=\(\dfrac{64}{9}\)

=>x=\(\dfrac{-8}{3}\)

20 tháng 7 2017

Kẻ Cz//By (z thuộc nửa mặt phẳng bờ AC chứa B)

Ta có: góc zCB=góc CBy = 30 độ (so le trong)

Mà góc zCB + góc zCA=120 độ

=> góc zCA=90 độ.

=> Cz//Ax (cùng vuông góc AC)

Mà Cz//By => Ax//By

28 tháng 7 2017

Bài 1:

x y m B A C 1 1 2 1

Qua B, vẽ tia Bm sao cho Bm // Ax

Bm // Ax ( cách vẽ ) => góc A1 + góc B1 = 180o ( trong cùng phía )

Mà góc A1 = 140o ( giả thiết ) => góc B1 = 40o

Ta có: góc B1 + góc B2 = góc ABC

Mà góc ABC = 70o ( giả thiết ); góc B1 = 40o ( chứng minh trên )

=> góc B2 = 30o

Ta có: góc B2 + góc C1 = 30o + 150o = 180o

Mà hai góc này ở vị trí trong cùng phía

=> Bm // Cy ( dấu hiệu nhận biết 2 đường thẳng song song )

Ta lại có:

Ax // Bm ( cách vẽ ); Cy // Bm ( chứng minh trên )

=> Ax // Cy ( tính chất 3 quan hệ từ vuông góc đến song song ) ( đpcm )

Bài 3:

A B C F E G N M H 1 2

a) Chứng minh AH < \(\dfrac{1}{2}\) ( AB + AC )

+) Vì AH vuông góc với BC ( giả thiết )

=> AH < AB ( quan hệ giữa đường vuông góc và đường xiên ) ( 1 )

+) Vì AH vuông góc với BC ( giả thiết )

=> AH < AC ( quan hệ giữa đường vuông góc và đường xiên ) ( 2 )

+) Từ ( 1 ) và ( 2 ) => AH + AH < AB + AC

=> 2 . AH < AB + AC

=> AH < \(\dfrac{1}{2}\) ( AB + AC ) ( đpcm )

b) Chứng minh EF = BC

+) Vì BM là đường trung tuyến của tam giác ABC ( giả thiết )

=> \(\dfrac{BG}{BM}=\dfrac{2}{3}\)

=> \(\dfrac{MG}{BG}=\dfrac{1}{2}\)

=> 2 . MG = BG

Mà EM = MG ( do BM là đường trung tuyến của tam giác ABC )

=> EM + MG = BG => EG = BG

+) Vì CN là đường trung tuyến của tam giác ABC ( giả thiết )

=> \(\dfrac{CG}{CN}=\dfrac{2}{3}\)

=> \(\dfrac{GN}{CG}=\dfrac{1}{2}\)

=> 2 . GN = CG

Mà FN = GN ( do CN là đường trung tuyến của tam giác ABC )

=> FN + GN = CG => FG = CG

Góc G1 = góc G2 ( đối đỉnh )

Xét tam giác FEG và tam giác CBG có:

FG = CG ( chứng minh trên )

EG = BG ( chứng minh trên )

Góc G1 = góc G2 ( chứng minh trên )

=> tam giác FEG = tam giác CBG ( c.g.c )

=> EF = BC ( 2 cạnh tương ứng ) ( đpcm )

21 tháng 2 2017

Ta có :

\(S=1.2+2.3+...+49.50\)

\(\Leftrightarrow3S=1.2.\left(3-0\right)+2.3.\left(4-1\right)+...+49.50.\left(51-48\right)\)

\(\Leftrightarrow3S=1.2.3-0.1.2+2.3.4-1.2.3+...+49.50.51-48.49.50\)

\(\Leftrightarrow3S=49.50.51\)

\(\Leftrightarrow S=\frac{49.50.51}{3}=41650\)

21 tháng 2 2017

S=1 . 2 + 2.3+3.4+.....+49.100

3S=1.2.3+2.3.3+3.4.3+....+49.50.3

3S=1.2.3+2.3.(4-1)+3.4(5-2)+....+49.50(51-48)

3S=1.2.3-2.3.4+2.3.4-2.3.1+......+48.49.50+49.50.51

3S=49.50.51

S=49.50.51 / 3

S=41650

18 tháng 9 2017

kẻ đường thẳng OK sao cho OK // a

Ta có góc A+KOA=180o( hai góc trong cùng phía bù nhau)

=> góc KOA=180o-110o=70o

=> góc KOB=140o - 70o = 70o

Mà KOB+B=70o+110o=180o

=> OK//b Mà OK//a; OK//b

=>a//b. tick giùm tui đi, please V_V

17 tháng 7 2017

Bài 1:
A B C . . / D E F / // // x x

a) Xét \(\Delta AED\)\(\Delta CEF\)có:

AE = EC (gt)

\(\widehat{AED}=\widehat{CEF}\left(đđ\right)\)

DE = EF (gt)

Do đó: \(\Delta AED=\Delta CEF\left(c-g-c\right)\)

=> AD = CF (hai cạnh tương ứng)

mà AD = DB (D là trung điểm của BA)

=> CF = DB

b) Vì \(\Delta AED=\Delta CEF\left(c-g-c\right)\)

=> \(\widehat{DAE}=\widehat{FCE}\) (hai cạnh tương ứng)

=> DA // CF

mà D nằm giữa đoạn thẳng AB (D là trung điểm của AB)

=> DB // CF

=> \(\widehat{BDC}=\widehat{FCD}\left(soletrong\right)\)

Xét \(\Delta BDC\)\(\Delta FCD\) có:

DC (chung)

\(\widehat{BDC}=\widehat{FCD}\left(cmt\right)\)

BD = CF (cmt)

Do đó: \(\Delta BDC=\Delta FCD\left(c-g-c\right)\)

c) Vì \(\Delta BDC=\Delta FCD\left(cmt\right)\)

=> \(\widehat{BCD}=\widehat{FCD}\) (hai cạnh tương ứng)

=> DF // BC (soletrong)

hay DE // BC

\(\Delta BDC=\Delta FCD\left(cmt\right)\)

=> DF = BC (hai cạnh tương ứng)

\(DE=\dfrac{1}{2}DF\) (D là trung điểm của DF)

=> \(DE=\dfrac{1}{2}BC\)