K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2021

\(A=\left(x+2\right)^2+\left|x+2\right|+15\)

Ta có:

\(\left(x+2\right)^2\ge0\forall x\)

\(\left|x+2\right|\ge0\forall x\)

\(\Rightarrow\left(x+2\right)^2+\left|x+2\right|\ge0\forall x\)

\(\Rightarrow\left(x+2\right)^2+\left|x+2\right|+15\ge15\forall x\)

\(\Rightarrow A\ge15\)Dấu bằng xảy ra.

\(\Leftrightarrow x+2=0\Leftrightarrow x=-2\)

Vậy \(minA=15\Leftrightarrow x=-2\)

11 tháng 10 2017

Ta có: \(A=\left|x-1999\right|+\left|x-9\right|=\left|1999-x\right|+\left|x-9\right|\ge\left|1999-x+x-9\right|=1990\)

Dấu "=" xảy ra khi \(\left(1999-x\right)\left(x-9\right)\ge0\Leftrightarrow9\le x\le1999\)

Vậy MinA = 1990 khi \(9\le x\le1999\)

10 tháng 9 2017

a, Ta có: \(A=\left|x+2\right|+\left|9-x\right|\ge\left|X+2+9-x\right|=11\)

Dấu "=' xảy ra khi \(\left(x+2\right)\left(9-x\right)\ge0\Leftrightarrow-2\le x\le9\)

Vậy MinA = 11 khi -2 =< x =< 9

b, Vì \(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\Rightarrow B=\frac{3}{4}-\left(x-1\right)^2\le\frac{3}{4}\)

Dấu "=" xảy ra khi x = 1

Vậy MaxB = 3/4 khi x=1

10 tháng 9 2017

Ta có :\(A=\left|x+2\right|+\left|9-x\right|\ge\left|x+2+9-x\right|=11\)

Vậy \(A_{min}=11\) khi \(2\le x\le9\)

9 tháng 1 2019

GIÁ TRỊ LỚN NHẤT ,GIÁ TRỊ NHỎ NHẤT CỦẢ MỘT BIỂU THỨC 
1/ Cho biểu thức f( x ,y,...)
a/ Ta nói M giá trị lớn nhất ( GTLN) của biểu thức f(x,y...) kí hiệu max f = M nếu hai điều kiện sau đây được thoả mãn:
Với mọi x,y... để f(x,y...) xác định thì :
f(x,y...) M ( M hằng số) (1)
Tồn tại xo,yo ... sao cho:
f( xo,yo...) = M (2) 
b/ Ta nói m là giá trị nhỏ nhất (GTNN) của biểu thức f(x,y...) kí hiệu min f = m nếu hai điều kiện sau đây được thoả mãn :
Với mọi x,y... để f(x,y...) xác định thì :
f(x,y...) m ( m hằng số) (1’)
Tồn tại xo,yo ... sao cho:
f( xo,yo...) = m (2’) 
2/ Chú ý : Nếu chỉ có điều kiện (1) hay (1’) thì chưa có thể nói gì về cực trị của một biểu thức chẳng hạn, xét biểu thức : A = ( x- 1)2 + ( x – 3)2. Mặc dù ta có A 0 nhưng chưa thể kết luận được minA = 0 vì không tồn tại giá trị nào của x để A = 0 ta phải giải như sau:
A = x2 – 2x + 1 + x2 – 6x + 9 = 2( x2 – 4x + 5) = 2(x – 2)2 + 2 2
A = 2 x -2 = 0 x = 2
Vậy minA = 2 khi chỉ khi x = 2
II/ TÌM GTNN ,GTLN CỦA BIỂU THƯC CHỨA MỘT BIẾN
1/ Tam thức bậc hai:
Ví dụ: Cho tam thức bậc hai P = ax2 + bx + c .
Tìm GTNN của P nếu a 0.
Tìm GTLN của P nếu a 0
Giải : P = ax2 + bx +c = a( x2 + x ) + c = a( x + )2 + c -
Đặt c - =k . Do ( x + )2 0 nên :
- Nếu a 0 thì a( x + )2 0 , do đó P k. MinP = k khi và chỉ khi x = -
-Nếu a 0 thì a( x + )2 0 do đó P k. MaxP = k khi và chỉ khi x = -
2/ Đa thức bậc cao hơn hai:
Ta có thể đổi biến để đưa về tam thức bậc hai
Ví dụ : Tìm GTNN của A = x( x-3)(x – 4)( x – 7)
Giải : A = ( x2 - 7x)( x2 – 7x + 12)
Đặt x2 – 7x + 6 = y thì A = ( y - 6)( y + 6) = y2 - 36 -36
minA = -36 y = 0 x2 – 7x + 6 = 0 x1 = 1, x2 = 6.
3/ Biểu thức là một phân thức :
a/ Phân thức có tử là hằng số, mẫu là tam thức bậc hai:
Ví dụ : Tìm GTNN của A = .
Giải : A = . = = .
Ta thấy (3x – 1)2 0 nên (3x – 1) 2 +4 4 do đó theo tính chất a b thì với a, b cùng dấu). Do đó A -
minA = - 3x – 1 = 0 x = .
Bài tập áp dụng: 
1. Tìm GTLN của BT : HD giải: .
2. Tìm GTLN của BT : HD Giải:
3. (51/217) Tìm giá trị nhỏ nhất của biểu thức:
b/ Phân thức có mẫu là bình phương của nhị thức.
Ví dụ : Tìm GTNN của A = .
Giải : Cách 1 : Viết A dưới dạng tổng hai biểu thức không âm 
A = = 2 + 2
minA = 2 khi và chi khi x = 2.
Cách 2: Đặt x – 1 = y thì x = y + 1 ta có :
A = = 3 - + = ( -1)2 + 2
minA = 2 y = 1 x – 1 = 1 x = 2
tui chỉ có một chút thôi

27 tháng 3 2020

ko biết