Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
e,\(3\frac{2}{7}x-\frac{1}{8}=2\frac{3}{4}\)
\(=>\frac{23}{7}x-\frac{1}{8}=\frac{11}{4}\)
\(=>\frac{23}{7}x=\frac{11}{4}+\frac{1}{8}=\frac{23}{8}\)
\(=>x=\frac{23}{8}:\frac{23}{7}\)
\(=>x=\frac{7}{8}\)
b) \(5\frac{1}{4}.\frac{3}{8}+10\frac{3}{4}.\frac{3}{8}\)
\(=\left(5\frac{1}{4}+10\frac{3}{4}\right).\frac{3}{8}\)
\(=16.\frac{3}{8}=6\)
c) \(6\frac{1}{5}.\frac{-2}{7}+14\frac{4}{5}.\frac{-2}{7}\)
\(=\left(6\frac{1}{5}+14\frac{4}{5}\right).\frac{-2}{7}\)
\(=21.\frac{-2}{7}=-6\)
\(\Rightarrow\dfrac{5}{4}-\dfrac{1}{4}x=\dfrac{3}{10}x-\dfrac{2}{5}\)
\(\Rightarrow\dfrac{5}{4}+\dfrac{2}{5}=\dfrac{3}{10}x-\dfrac{1}{4}x\)
\(\Rightarrow\dfrac{33}{20}=\dfrac{11}{20}x\)
\(\Rightarrow x=\dfrac{33}{20}\div\dfrac{11}{20}\)
\(\Rightarrow x=3\)
\(1\dfrac{1}{4}-x\dfrac{1}{4}=x\cdot30\%\cdot\dfrac{2}{5}\)
\(\Leftrightarrow\dfrac{5}{4}-x\dfrac{1}{4}=x\cdot\dfrac{3}{10}-\dfrac{2}{5}\)
\(\Leftrightarrow\dfrac{5}{4}-\dfrac{1}{4}x=\dfrac{3}{10}x-\dfrac{2}{5}\)
\(\Leftrightarrow25-5x=6x-8\)
\(\Leftrightarrow-5x-6x=-8-25\)
\(\Leftrightarrow-11x=-33\)
\(\Leftrightarrow x=3\)
Vậy x = 3
Bài 4
d. 450 : [ 41 - (2x - 5) ] = 32 . 5
450 : [ 41 - (2x - 5) ] = 9 . 5
450 : [ 41 - (2x - 5) ] = 45
[ 41 - (2x - 5) ] = 450 : 45
41 - (2x - 5) = 10
(2x - 5) = 41 - 10
2x - 5 = 31
2x = 31 + 5
2x = 36
x = 36 : 2
x = 1
e. 30 : (x - 7) = 1519 : 158
30 : (x - 7) = 15
x - 7 = 30 : 15
x - 7 = 2
x = 2 + 7
x = 9
f. (2x - 3)3 = 125
2x - 3 = 5
2x = 5 + 3
2x = 8
x = 8 : 2
x = 4
tk cho cj nha
Bài 2:
a. $=124-52.124+124.47=124(1-52+47)=124(48-52)=124.(-4)=-496$
b. $=55(-78)+13(-78)-65(-78)=(-78)(55+13-65)=(-78).3=-234$
c. $=100(-47)+53(-100)=100(-47)+(-53).100=100[(-47)+(-53)]=100.(-100)=-10000$
d. $=25.75-25.49.3-75.25+75.49$
$=25.75-49.75-75.25+75.49=(25.75-75.25)+(75.49-49.75)=0+0=0$
Bài 3:
a. Ta nhớ quy tắc âm * âm = dương nên:
$(-18)(-13)>0$
$(-15)(-17)>0$
$\Rightarrow (-18)(-13)> (-15)(-17)$ (đpcm)
b.
$(-1)(-2)>0$
$(-3)(-4)>0$
$.....$
$(-17)(-18)>0$
$-19<0$
$\Rightarrow (-1)(-2)...(-18)(-19)<0$