Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Khi n = 10 có:
\(A=\frac{10-5}{10+1}=\frac{5}{11}\)
b) Khi n = 0
\(A=\frac{0-5}{0+1}=-\frac{5}{1}=-5\)
c) Để A thuộc Z thì n - 5 chia hết cho n + 1
=> n - 6 + 1 chia hết cho n + 1
=> n + 1 chia hết cho n + 1 => -6 chia hết n + 1
=> n + 1 thuộc Ư (6) = {1;2;3;6;-1;-2;-3;-6}
=> n thuộc {0;1;2;5;-2;-3;-4;-7}
d. Để A tối giản thì n = {0;5;-2}
\(\Leftrightarrow1-\frac{4}{a+7}=1-\frac{5}{a+8}=1-\frac{6}{a+9}=1-\frac{7}{a+10}=1-\frac{8}{a+11}=1-\frac{9}{a+12}\)
\(\Leftrightarrow\frac{a+3}{a+7}=\frac{a+3}{a+8}=\frac{a+3}{a+9}=\frac{a+3}{a+10}=\frac{a+3}{a+11}=\frac{a+3}{a+12}\)
=> Vì a nguyên dương => a +3 khác 0
=> a+7 =a+8 =a +9 =a+10=a+11=a+12 => 7=8=9=10=11=12 ( vô lí )
=> Không có số a nào thỏa mãn
bn ơi mk nghĩ đề bn ghi sai rồi đó mk sửa lại nha
Tìm số .... tối giản:
\(\frac{4}{a+7};\frac{5}{a+8};\frac{6}{a+9};\frac{7}{a+10};\frac{8}{a+11};\frac{9}{a+12}\)
Giải: Các phân số trên có dạng \(\frac{x}{a+x+3}\)
Để \(\frac{x}{a+x+3}\) tối giản \(\Leftrightarrow\)\(\left(x;a+x+3\right)=1\)\(\Leftrightarrow\)\(\left(x;a+3\right)=1\)
Do đó a + 3 nguyên tố cùng nhau với mỗi số x = 4; 5; 6; 7; 8; 9
Mà a nhỏ nhất suy ra a + 3 = 11 (11 là số nguyên tố nhỏ nhất mà nguyên tố cùng nhau với mỗi số x = 4; 5; 6; 7; 8; 9)
Từ đó a = 8.
Theo đề bài ta có : \(\frac{a+70}{b-116}=\frac{a}{b}\)
Áp dụng TC DTSBN ta có :
\(\frac{a+70}{b-116}=\frac{a}{b}=\frac{a+70-a}{b-116-b}=\frac{70}{-116}=\frac{-35}{58}\)
Vậy \(\frac{a}{b}=\frac{-35}{58}\)
a. Giá trị nhỏ nhất của A=\(\sqrt{2}+\frac{3}{11}\)
không có giá trị lớn nhất
b. Giá trị lớn nhất của B là \(\frac{5}{7}\) khi x=5 không có GTLN
\(\frac{1}{4}:x=-\frac{7}{20}\)
\(x=\frac{1}{4}:-\frac{7}{20}\)
\(x=-\frac{5}{7}\)
\(\frac{3}{4}+\frac{1}{4}\div x=\frac{2}{5}\)
\(\Rightarrow\frac{1}{4}\div x=-\frac{7}{20}\)
\(\Rightarrow x=\frac{1}{4}\div\left(-\frac{7}{20}\right)\)
\(\Rightarrow x=-\frac{5}{7}\)
\(x^3=-\frac{27}{343}\)
\(x^3=\left(-\frac{3}{7}\right)^3\)
\(x=-\frac{3}{7}\)
Chúc bạn học tốt
Ta có : \(x^3=-\frac{27}{343}\)
\(\Rightarrow x=\sqrt[3]{-\frac{27}{343}}\)
\(\Rightarrow x=-\frac{3}{7}\)
Vậy \(x=-\frac{3}{7}\)