K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2019

A B C D E M I N F

a) Xét \(\Delta\)ABD và \(\Delta\)ACE có:AD=AC,^DAB=^EAC(cùng bằng 90 độ-^BAC),AB=AE => \(\Delta ABD=\Delta ACE\left(c-g-c\right)\)

\(\Rightarrow BD=CE\)

b) Xét \(\Delta\)AMB và \(\Delta\)NMC có: AM=MN,^AMB=^NMC,MB=MC => \(\Delta AMB=\Delta NMC\left(c-g-c\right)\)

\(\Rightarrow\widehat{MAB}=\widehat{NMC}\Rightarrow AB//NC,AB=NC\)

\(\Rightarrow\widehat{ACN}+\widehat{BAC}=180^0\) Mà \(\widehat{DAB}+\widehat{BAC}+\widehat{EAC}+\widehat{BAC}=180^0\)

\(\Rightarrow\widehat{ACN}+\widehat{BAC}=\widehat{DAB}+\widehat{BAC}+\widehat{EAC}+\widehat{BAC}\)

\(\Rightarrow\widehat{ACN}=\widehat{DAE}\)

Xét \(\Delta\)ADE và \(\Delta\)CAN có:AD=AC,^ACN=^DAE,AE=NC => \(\Delta ADE=\Delta CAN\left(c-g-c\right)\)

c)

Gọi F là giao điểm của DE và AB.

Ta có:^CNM=^AED => ^FAI=^AED.Lại có:\(\widehat{FAI}+\widehat{IAE}=90^0\Rightarrow\widehat{AED}+\widehat{IAE}=90^0\Rightarrow\widehat{AIE}=90^0\Rightarrow AN\perp DE\)

Áp dụng định lý Pythagore vào tam giác vuông AIE có:\(AE^2=AI^2+IE^2\)

\(\Rightarrow DI^2+AE^2=AI^2+IE^2+DI^2=AD^2+IE^2\left(đpcm\right)\)

P/S:hình vẽ kí hiệu góc hơi xấu tí,thông cảm!

3 tháng 3 2019

-Bạn ơi mik sẽ giải còn hình bạn tự vẽ nha!

a,Xét tam giác ADB và tam giác ACE có

AD=AC(gt)

góc DAB=góc CAE( cùng phụ vs góc BAC)

AB=AE(gt)

Suy ra tam giác ADB=tam giác ACE(c.g.c)

suy ra BD=CE(hai cạnh tương ứng)

b,Xét tam giác ABM và tam giác NCM có

AM=NM(gt)

góc AMB=góc NMC(hai góc đối đỉnh)

BM=MC(gt)

suy ra tam giác ABM=tam giác NCM(c.g.c)

suy ra AB=NC(hai cạnh tương ứng) mà AB=AE suy ra NC=AE

Xét tam giác ADE và tam giác CAN có

NC=AE(cmt)

góc DAE=góc ACN

AD=AC(gt)

suy ra tam giác ADE=tam giác CAN(c.g.c)

c, Do tam giác ADE=tam giác CAN(câu b) nên góc ADE=góc CAN( hai góc tương ứng)

suy ra góc DAI+góc ADE=90

suy ra tam giác AID vuông tại I

áp dụng định lí Pytago, ta có:

AD^2-DI^2=AI^2

Do góc AID=90 nên góc AIE=180-90=90(kề bù với góc AID)

suy ra tam giác AIE vuông tại I

Áp dụng định lí Pytago, ta có:

AE^2-IE^2=AI^2

suy ra AD^2-DI^2=AE^2-IE^2

hay AD^2+IE^2=AE^2+DI^2

suy ra đccm

4 tháng 3 2019

Thanks bạn nha!!!

6 tháng 4 2018

a) 

Ta có góc BAD =góc CAE ( cùng phụ với góc BAC)

Xét tam giác DAB và tam giác CAE có

AD=AC (gt)

góc BAD=CAE (cmt)

AB=AE

=>TAM GIAC BAD= CAE (c-g-c)

=>BD=CE (dpcm)

b)

Xét tam giác ABM và NCM có

MA=MN

góc AMB =NMC (đối đỉnh)

BM =CM (AM là trung tuyến )

=>tam giác ABM=NCM (c-g-c)

=>AB =CN 

=>CN=AE 

TA có BAM=CNM ( tam giác ABM=NCM)

=>AB //CN

=>BAC+ACN=180 (2 GÓC trong cung phía) (1)

c/m dc DAE+BAC=180 (2)

TỪ (1) và (2) 

=>ACN =DAE (CÙNG BÙ BAC)

xét TAM GIÁC ADE và tam giác CAN có

AD=AC (gt)

Góc DAE=ACN

AE=CN

=>Tam giác ADE= CAN (c-g-c)

C) gọi giao điểm của DE và AB là F

Ta có CNM=BAM hay CNM=FAI

MÀ GÓC CNM=AED

=>FAI=AED (=CNM) hay góc FAI=AEF

xét tam giác AFE có FAE=90

= góc AFE +AEF=90

Mà góc FAI=AEF (cmt)

=>góc AFE+FAI =90

=>góc AIF=90

=>\(AI\perp DE\)

XÉT tam giác AEI có AI\(\perp\)DE

=> AE=AI2+IE2

=> DI2+AE2=AI2+IE2 +DI2(3)

Xét tam giác ADI CÓ \(AI\perp DE\) 

=>AD2=AI2+DI2

=>AD2+IE2=AD2+AI2+DI2 (4)

Từ (3) và(4) 

=>AD2+IE2 =DI2+AE2

=>\(\frac{AD^2+IE^2}{DI^2+AE^2}\) =\(1\)(DPCM)

A B C F M D E

Bài làm

a) Xét tam giác AMB và tam giác FMC có:

AM = MF

\(\widehat{AMB}=\widehat{FMC}\)( hai góc đối nhau )

BM = MC 

=> Tam giác AMB = tam giác FMC ( c.g.c )

=> \(\widehat{BAM}=\widehat{CFM}\)( hai góc t/ứng )

Mà hai góc này so le trong

=> AB // CF

# Học tốt #

2 tháng 3 2017

Có ai bít làm bài này ko?Làm cho mik vs nữa!!

2 tháng 3 2017

trời ơi mai tui thi rồi làm ơn giải giùm tôi cái đi!! không cần bình luận đâu