Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2+b^2+2ab=\frac{64}{7}.ab\Leftrightarrow\left(a+b\right)^2=\frac{64}{7}ab\)
\(a^2+b^2-2ab=\frac{36}{7}.ab\Leftrightarrow\left(a-b\right)^2=\frac{36}{7}.ab\)
\(\Rightarrow\left(\frac{a+b}{a-b}\right)^2=\frac{64}{36}.\frac{ab}{ab}\Rightarrow\frac{a+b}{a-b}=\frac{4}{3}\)
2/ Ta có \(\left(a+b+c+d\right)^2\ge\frac{8}{3}\left(ab+ac+ad+bc+bd+cd\right)\)
\(\Leftrightarrow a^2+b^2+c^2+d^2+2\left(ab+ac+ad+bc+bd+cd\right)\ge\frac{8}{3}\left(ab+ac+ad+bc+bd+cd\right)\)
\(\Leftrightarrow3\left(a^2+b^2+c^2+d^2\right)+6\left(ab+ac+ad+bc+bd+cd\right)\ge8\left(ab+ac+ad+bc+bd+cd\right)\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(a^2-2ad+d^2\right)+\left(b^2-2bc+c^2\right)+\left(b^2-2bd+d^2\right)+\left(c^2-2cd+d^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(a-d\right)^2+\left(b-c\right)^2+\left(b-d\right)^2+\left(c-d\right)^2\ge0\)(luôn đúng)
Vậy bđt ban đầu được chứng minh.
\(a+b=3\Rightarrow\left(a+b\right)^2=9\)
\(\Rightarrow a^2+b^2+2ab=9\Rightarrow7+2ab=9\Rightarrow ab=1\)
\(\Rightarrow a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=3\left(7-1\right)=18\)
Vậy \(a^3+b^3=18\)
a) Ta dùng hằng đẳng thức: \(\left(a-b\right)^2=\left(a+b\right)^2-4ab\) (1)
Thay a+b=7 và ab=12 vào (1) ta được:
\(\left(a-b\right)^2=7^2-4.12=49-48=1\)
Vậy:.....
b) Ta dùng hằng đẳng thức: \(\left(a+b\right)^2=\left(a-b\right)^2+4ab\) (2)
Thay a-b=6 và ab = 3 vào (2) ta được:
\(\left(a+b\right)^2=6^2+4.3=36+12=48\)
Vậy:....
c) Dùng hằng đẳng thức: \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\) (3)
Thay ab = 6 và a+b = -5 vào (3) ta được:
\(a^3+b^3=\left(-5\right)^3-3.6\left(-5\right)=-125-90=-215\)
Vậy......
1/ = ab-ac-ab-bc+ac-bc
= -2bc
2/ = a^3 +a.b^2 +a.c^2 -a^2 .b - a.b^2 -abc -a^2 .c +a^2 .b +b^3 +bc^2 -a.b^2 -b^2 .c -abc +a^2 .c +b^2 .c +c^3 -abc- b.c^2 -a.c^2
= a^3 +b^3 +c^3 -3abc
Bạn chỉ cần nhân ra thôi. Chúc bạn học tốt.