K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2018

A=3n+3 + 2n+3 +3n+1 +2n+2 

=3n.33 +2n..2+ 3n .3 + 2n+22

= 3n(33+3) + 2n(23+22)

= 30.3n + 12.2n

=6 (5.3+ 2.2n) chia hết 6 Với moi n thuộc N (đpcm)

1 tháng 12 2016

1) = 3n(32+1) - 2n(22+1)

2)A=m.n.p

\(\frac{m^2}{\frac{2^2}{5^2}}=\frac{n^2}{\frac{3^2}{4^2}}=\frac{p^2}{\frac{1^2}{6^2}}=\frac{m^2+n^2+p^2}{\frac{2^2}{5^2}+\frac{3^2}{4^2}+\frac{1^2}{6^2}}\)

3) \(\frac{a^2}{\text{\text{c}^2}}=\frac{\text{c}^2}{b^2}=\frac{a^2+\text{c}^2}{b^2+\text{c}^2}\)\(\frac{a^2}{\text{c}^2}=\frac{\text{c}^2}{b^2}=\frac{a^2+\text{c}^2}{\text{c}^2+b^2}\)

mà ab=c2

suy ra đpcm

26 tháng 5 2017

Bài 1:
a)1/9 x 27n= 3n

1/9=3n:27n

3n:27n=1/9

1n/9n=1/9

=>n=1

26 tháng 5 2017

\(\frac{1}{2}.2^n+4.2^n=9.2^5\Rightarrow2^n\left(\frac{1}{2}+4\right)=288\Rightarrow2^n.\frac{9}{2}=288\Rightarrow2^{n-2}.9=288\Rightarrow2^{n-2}=32\)(dấu "=>" số 3 bn sửa thành 2n-1.9=288=>2n-1=32 nha)

=>2n-1=25=>n-1=5=>n=5+1=6

vậy......

~~~~~~~~~~~~~~~

28 tháng 8 2016

a) \(3^{n+2}-2^{n+2}+3^n-2^n=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)=\left(3^n.3^2+3^n\right)-\left(2^n.2^2+2^n\right)\)

\(=\left[3^n.\left(3^2+1\right)\right]-\left[2^n.\left(2^2+1\right)\right]=\left(3^n.10\right)-\left(2^{n-1}.2.5\right)=\left(3^n.10\right)-\left(2^{n-1}.10\right)\)

Do: 3n . 10 chia hết cho 10 và 2n - 1 . 10 chia hết cho 10

=> ( 3n . 10 ) - ( 2n - 1 . 10 ) chia hết cho 10  => 3n + 2 - 2n + 2 + 3n - 2n chia hết cho 10

28 tháng 1 2018

1

undefined

AH
Akai Haruma
Giáo viên
28 tháng 1 2018

Lời giải:

Câu 1)

Ta có: \(A_n=n^3+3n^2-n-3=n^2(n+3)-(n+3)\)

\(A_n=(n^2-1)(n+3)=(n-1)(n+1)(n+3)\)

Do $n$ lẻ nên đặt \(n=2k+1\)

\(A_n=(n-1)(n+1)(n+3)=2k(2k+2)(2k+4)\)

\(A_n=8k(k+1)(k+2)\)

Do \(k,k+1,k+2\) là ba số tự nhiên liên tiếp nên tích của chúng chia hết cho $3$

\(\Rightarrow A_n=8k(k+1)(k+2)\vdots 3(1)\)

Mặt khác \(k,k+1\) là hai số tự nhiên liên tiếp nên \(k(k+1)\vdots 2\)

\(\Rightarrow A_n=8k(k+1)(k+2)\vdots (8.2=16)(2)\)

Từ \((1); (2)\) kết hợp với \((3,16)\) nguyên tố cùng nhau nên

\(A_n\vdots (16.3)\Leftrightarrow A_n\vdots 48\)

Ta có đpcm.

Bài 2:

\(A_n=2n^3+3n^2+n=n(2n^2+3n+1)\)

\(A_n=n[2n(n+1)+(n+1)]=n(n+1)(2n+1)\)

Vì \(n,n+1\) là hai số nguyên liên tiếp nên \(n(n+1)\vdots 2\)

\(\Rightarrow A_n\vdots 2(1)\)

Bây giờ, xét các TH sau:

TH1: \(n=3k\Rightarrow A_n=3k(n+1)(2n+1)\vdots 3\)

TH2: \(n=3k+1\Rightarrow 2n+1=2(3k+1)+1=3(2k+1)\vdots 3\)

\(\Rightarrow A_n=n(n+1)(2n+1)\vdots 3\)

TH3: \(n=3k+2\Rightarrow n+1=3k+3=3(k+1)\vdots 3\)

\(\Rightarrow A_n=n(n+1)(2n+1)\vdots 3\)

Vậy trong mọi TH thì \(A_n\vdots 3(2)\)

Từ (1); (2) kết hợp với (2,3) nguyên tố cùng nhau suy ra \(A_n\vdots 6\)

Ta có đpcm.

\(A=3^{n+3}+2^{n+3}+3^{n+1}+2^{n+2}\)

\(A=3^n.3^3+2^n.2^3+3^n.3+2^n2^2\)

\(A=3^n.27+2^n.8+3^n.3+2^n.4\)

\(A=3^n.30+2^n.12\)

\(A=6\left(3^n.5+2^n.2\right)\)chia hết cho 6

14 tháng 1 2017

Đầu tiên, Tính S1=1+2+3+...+n=\(\frac{n\left(n+1\right)}{2}\)

*/ Tính S2=12+22+32+...+n2

Đặt: S2'=1.2+2.3+3.4+...+n(n+1)

=>3S2'=1.2.3+2.3.3+3.4.3+...+n(n+1).3=1.2.3+2.3.(4-1)+3.4.(5-2)+...+n(n+1)[(n+2)−(n−1)]

Nhân ra và rút gọn ta được: 3S2′=n(n+1)(n+2) => S2'=\(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)

Ta lại có: S2′=1.2+2.3+3.4+...+n(n+1)=(12+22+32+...+n2)+(1+2+3+...+n)=S2+S1=S2+\(\frac{n\left(n+1\right)}{2}\)

=> S2=S2'-\(\frac{n\left(n+1\right)}{2}\)=\(\frac{n\left(n+1\right)\left(n+2\right)}{3}\) -\(\frac{n\left(n+1\right)}{2}\)=\(\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)

S3=