
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


câu a : căn hai phần 2-5x có nghĩa ↔2 phần 2-5x lớn hơn hoặc bằng 0 ↔2-5x lớn hơn 0↔x nhỏ hơn 2 phần 5 câu b: căn 5-2x phần x2 có nghĩa ↔5-2x >= 0↔ x<= 5 phần 2 câu c; căn 4-x2 có nghĩa ↔(2-x)(2+x) lớn hơn hoặc bằng 0 ↔x<=2 hoặc x >= -2 câu d;căn x2-1 có nghĩa ↔(x-1)(x+1)>=0↔x>=1 hoặc x>=-1


MK hứng bài nào thì lm bài đấy nhé!
Bài 21:
Ta có: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)
<=> \(\dfrac{ab+bc+ca}{abc}=0\)
<=> \(ab+bc+ac=0\)
<=> \(ab+bc+ac+c^2=c^2\)
<=> \(\sqrt{ab+bc+ac+c^2}=\sqrt{c^2}\)
<=> \(\sqrt{\left(a+c\right)\left(b+c\right)}=\left|c\right|\) (1)
Mặt khác: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\) ; \(a,b>0;c\ne0\) => \(c< 0\) (2)
Từ (1); (2) => \(\sqrt{\left(a+c\right)\left(b+c\right)}=-c\)
<=> \(2\sqrt{\left(a+c\right)\left(b+c\right)}+2c=0\)
<=> \(\left(a+c\right)+2\sqrt{\left(a+c\right)\left(b+c\right)}+\left(b+c\right)=a+b\)
<=> \(\left(\sqrt{a+c}+\sqrt{b+c}\right)^2=\left(\sqrt{a+b}\right)^2\)
<=> \(\sqrt{a+c}+\sqrt{b+c}=\sqrt{a+b}\) => Đpcm

Bài 3:
Xét ΔABC vuông tại A(gt)
=>AB^2+AC^2=BC^2 (theo định lý pytago)
=>BC^2=10^2+15^2=325
=>BC\(\approx18\)(cm)
Có: \(\sin B=\frac{AC}{BC}=\frac{15}{18}=\frac{5}{6}\)
=> \(\widehat{B}=56\)
b) Vì BI là tia phân giác của ^ABC(gt)
=> \(\frac{AB}{BC}=\frac{IA}{IC}\)
hay \(\frac{AB}{AB+BC}=\frac{IA}{IA+IC}\)
=> \(IA=\frac{AB\cdot AC}{AB+BC}=\frac{10\cdot15}{10+18}\approx5,6\)
c) ÁP dụng hệ thức liên quan tới đg cao ta có:
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AI^2}=\frac{1}{10^2}+\frac{1}{5,6^2}=\frac{821}{19600}\)
=> \(AH^2=\frac{19600}{821}\Leftrightarrow AH\approx4,9\)


Đáp án của phần trắc nghiệm như sau:
1-D
2-B
3-C
4-B
5-D
6-B
7-D
8-D
a) Xét tứ giác ADHE có: \(\widehat{ADH}=90\)
\(\widehat{DAE}=90\)
\(\widehat{AEH}=90\)
=> Tứ giác ADHE là hình chữ nhật
=>DE=AH
Áp dụng hệ thức liên quan tới đường cao ta có:
\(AH^2=HB\cdot HC=2\cdot8=16\)
=>AH=4
=>DE=AH=4
b)Gọi O là giao điểm của AH và DE
Vì ADHE là hình chữ nhật
=>OD=OA
=>ΔOAD cân tại O
=>\(\widehat{OAD}=\widehat{ODA}\)
Xét ΔABH vuông tại H(gt)
=>\(\widehat{BAH}+\widehat{B}=90\) (1)
Xét ΔABC vuông tại A(gt)
=>\(\widehat{B}+\widehat{C}=90\) (2)
Từ (1) (2) suy ra: \(\widehat{BAH}=\widehat{C}\)
Mà: \(\widehat{OAD}=\widehat{ODA}\) (cmt)
=> \(\widehat{ADE}=\widehat{ACB}\)
Xét ΔADE và ΔACB có
\(\widehat{DAE}=\widehat{CAB}=90\left(gt\right)\)
\(\widehat{ADE}=\widehat{ACB}\left(cmt\right)\)
=>ΔADE~ΔACB
cám ơn bạn :D