Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n\left(n+3\right)=n^2+3n\)
\(\left(n+2\right)\left(n+1\right)=n^2+3n+2\)
Vì \(n^2+3n< n^2+3n+2\Rightarrow\dfrac{n}{n+1}< \dfrac{n+2}{n+3}\left(n\in N\right)\)
b) \(\dfrac{n}{2n+1}=\dfrac{3n}{6n+3}< \dfrac{3n+1}{6n+3}\)
c) \(\dfrac{10^8+2}{10^8-1}=1+\dfrac{1}{10^8-1}\)
\(\dfrac{10^8}{10^8-3}=\left(1+\dfrac{3}{10^8-3}\right)\)
Vì \(\dfrac{1}{10^8-1}>\dfrac{3}{10^8-3}\Rightarrow\dfrac{10^8+2}{10^8-1}< \dfrac{10^8}{10^8-3}\)
Làm dần dần và làm từ từ, suy ra được nhiều cách giải.
a) \(\dfrac{n}{n+1}\) và \(\dfrac{n+2}{n+3}\)
+ Cách 1:
\(\dfrac{n}{n+1}=\dfrac{n+1-1}{n+1}=1-\dfrac{1}{n+1}\)
\(\dfrac{n+2}{n+3}=\dfrac{n+3-1}{n+3}=1-\dfrac{1}{n+3}\)
Vì \(\dfrac{1}{n+1}>\dfrac{1}{n+3}\) nên \(1-\dfrac{n}{n+1}< 1-\dfrac{1}{n+3}\)
\(\Rightarrow\dfrac{n}{n+1}< \dfrac{n+2}{n+3}\)
+ Cách 2:
Ta so sánh: \(n\left(n+3\right)\) và \(\left(n+1\right)\left(n+2\right)\)
\(n\left(n+3\right)=nn+3n=n^2+3n\)
\(\left(n+1\right)\left(n+2\right)=\left(n+1\right)n+\left(n+1\right).2=n^2+n+2n+2=n^2+3n+2\)
Vì \(n^2+3n< n^2+3n+2\) nên \(\dfrac{n}{n+1}< \dfrac{n+2}{n+3}\)
b) \(\dfrac{n}{2n+1}\) và \(\dfrac{3n+1}{6n+3}\)
Ta so sánh: \(n\left(6n+3\right)\) và \(\left(2n+1\right)\left(3n+1\right)\)
\(n\left(6n+3\right)=n.6n+3n=6n^2+3n\)
\(\left(2n+1\right)\left(3n+1\right)=\left(2n+1\right)3n+\left(2n+1\right)=6n^2+3n+2n+1=6n^2+5n+1\)
Vì \(6n^2+3n< 6n^2+5n+1\) nên \(\dfrac{n}{2n+1}< \dfrac{3n+1}{6n+3}\)
c) \(\dfrac{10^8+2}{10^8-1}\) và \(\dfrac{10^8}{10^8-3}\)
\(\dfrac{10^8+2}{10^8-1}=\dfrac{10^8-1+3}{10^8-1}=1+\dfrac{3}{10^8-1}\)
\(\dfrac{10^8}{10^8-3}=\dfrac{10^8-3+3}{10^8-3}=1+\dfrac{3}{10^8-3}\)
Vì \(\dfrac{3}{10^8-1}>\dfrac{3}{10^8-3}\) nên \(\dfrac{10^8+2}{10^8-1}>\dfrac{10^8}{10^8-3}\)
d) \(\dfrac{3^{17}+1}{3^{20}+1}\) và \(\dfrac{3^{20}+1}{3^{23}+1}\)
(đang tìm cách làm, và thêm vài cách khác)
Bài 1:
a, \(\left(x-2\right)^2=9\)
\(\Rightarrow x-2\in\left\{-3;3\right\}\Rightarrow x\in\left\{-1;5\right\}\)
b, \(\left(3x-1\right)^3=-8\)
\(\Rightarrow3x-1=-2\Rightarrow3x=-1\)
\(\Rightarrow x=-\dfrac{1}{3}\)
c, \(\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{16}\)
\(\Rightarrow x+\dfrac{1}{2}\in\left\{-\dfrac{1}{4};\dfrac{1}{4}\right\}\)
\(\Rightarrow x\in\left\{-\dfrac{3}{4};-\dfrac{1}{4}\right\}\)
d, \(\left(\dfrac{2}{3}\right)^x=\dfrac{4}{9}\)
\(\Rightarrow\left(\dfrac{2}{3}\right)^x=\left(\dfrac{2}{3}\right)^2\)
Vì \(\dfrac{2}{3}\ne\pm1;\dfrac{2}{3}\ne0\) nên \(x=2\)
e, \(\left(\dfrac{1}{2}\right)^{x-1}=\dfrac{1}{16}\)
\(\Rightarrow\left(\dfrac{1}{2}\right)^{x-1}=\left(\dfrac{1}{2}\right)^4\)
Vì \(\dfrac{1}{2}\ne\pm1;\dfrac{1}{2}\ne0\) nên \(x-1=4\Rightarrow x=5\)
f, \(\left(\dfrac{1}{2}\right)^{2x-1}=8\) \(\Rightarrow\left(\dfrac{1}{2}\right)^{2x-1}=\left(\dfrac{1}{2}\right)^{-3}\) Vì \(\dfrac{1}{2}\ne\pm1;\dfrac{1}{2}\ne0\) nên \(2x-1=-3\) \(\Rightarrow2x=-2\Rightarrow x=-1\) Chúc bạn học tốt!!!\(.2.\)
\(a.\)
\(2x+\dfrac{1}{2}=-\dfrac{5}{3}\)
\(\Rightarrow2x=-\dfrac{5}{3}-\dfrac{1}{2}=-\dfrac{13}{6}\)
\(\Rightarrow x=-\dfrac{13}{6}:2=-\dfrac{13}{12}\)
Vậy : \(x=-\dfrac{13}{12}\)
\(b.\)
\(\dfrac{1}{7}-\dfrac{3}{5}x=\dfrac{3}{5}\)
\(\Rightarrow\dfrac{3}{5}x=\dfrac{1}{7}-\dfrac{3}{5}=-\dfrac{16}{35}\)
\(\Rightarrow x=-\dfrac{16}{35}:\dfrac{3}{5}=-\dfrac{16}{21}\)
Vậy : \(x=-\dfrac{16}{21}\)
\(c.\)
\(\dfrac{3}{4}x+\dfrac{1}{2}=-\dfrac{3}{5}\)
\(\Rightarrow\dfrac{3}{4}x=-\dfrac{3}{5}-\dfrac{1}{2}=-\dfrac{11}{10}\)
\(\Rightarrow x=-\dfrac{11}{10}:\dfrac{3}{4}=-\dfrac{22}{15}\)
Vậy : \(x=-\dfrac{22}{15}\)
\(d.\)
\(-\dfrac{2}{15}-x=-\dfrac{3}{10}\)
\(\Rightarrow x=-\dfrac{2}{15}-\left(-\dfrac{3}{10}\right)=\dfrac{1}{6}\)
Vậy : \(x=\dfrac{1}{6}\)
Vì 18/91 < 18/90 =1/5
23/114>23115=1/5
vậy 18/91<1/5<23/114
suy ra 18/91<23/114
vì 21/52=210/520
Mà 210/520=1-310/520
213/523=1-310/523
310/520>310/523
vậy 210/520<213/523
suy ra 21/52<213/523
B = \(\dfrac{n+4}{n-2}\) = \(\dfrac{\left(n-2\right)+6}{n-2}\) = 1 + \(\dfrac{6}{n-2}\).
Để B là số nguyên => \(\dfrac{6}{n-2}\) là số nguyên.
<=> 6 chia hết cho n - 2.
<=> n - 2 là ước của 6 = {-6;-3;-2;-1;1;2;3;6}.
Ta có bảng giá trị:
n - 2 | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 |
n | -4 | -1 | 0 | 1 | 3 | 4 | 5 | 8 |
Các giá trị nêu trên đều thỏa mãn.
Vậy n thuộc: {-4;-1;0;1;3;4;5;8}.
a, Gọi d là ước chung của 21n + 4 và 14n + 3 \(\left(d\in Z,d\ne0\right)\)
\(\Rightarrow\left\{{}\begin{matrix}21n+4⋮d\\14n+3⋮d\end{matrix}\right.\)
+) Vì : \(21n+4⋮d\Rightarrow2\left(21n+4\right)⋮d\Rightarrow42n+8⋮d\)
+) Vì : \(14n+3⋮d\Rightarrow3\left(14n+3\right)⋮d\Rightarrow42n+9⋮d\)
\(\Rightarrow\left(42n+9\right)-\left(42n+8\right)⋮d\)
\(\Rightarrow42n+9-48n-8⋮d\Rightarrow1⋮d\)
\(\Rightarrow d\in\left\{1;-1\right\}\) => \(\dfrac{21n+4}{14n+3}\) là phân số tối giản
b, tương tự
c, Gọi d là ước chung của 2n + 3 và n2 + 3n + 2 \(\left(d\in Z,d\ne0\right)\)
\(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\n^2+3n+2⋮d\end{matrix}\right.\)
+) Vì \(2n+3⋮d\Rightarrow n\left(2n+3\right)⋮d\Rightarrow2n^2+3n⋮d\)
+) Vì : \(n^2+3n+2⋮d\Rightarrow2\left(n^2+3n+2\right)⋮d\Rightarrow2n^2+6n+4⋮d\)
Mà : \(2n^2+3n⋮d\)
\(\Rightarrow\left(2n^2+6n+4\right)-\left(2n^2+3n\right)⋮d\)
\(\Rightarrow2n^2+6n+4-2n^2-3n⋮d\Rightarrow3n+4⋮d\)
\(\Rightarrow2\left(3n+4\right)⋮d\Rightarrow6n+8⋮d\)
Vì : \(2n+3⋮d\Rightarrow3\left(2n+3\right)⋮d\Rightarrow6n+9⋮d\)
\(\Rightarrow\left(6n+9\right)-\left(6n+8\right)⋮d\)
\(\Rightarrow6n+9-6n-8⋮d\Rightarrow1⋮d\)
\(\Rightarrow d\in\left\{-1;1\right\}\Rightarrow\dfrac{2n+3}{n^2+3n+2}\) là phân số tối giản
d, tương tự câu c
Mình làm 1 câu thôi các câu sau bạn làm theo mẫu nhé
Gọi d là UCLN(21n+4;14n+3)
\(\Leftrightarrow21n+4⋮d\Rightarrow2\left(21n+4\right)⋮d\Rightarrow42n+8⋮d\)
\(\Leftrightarrow14n+3⋮d\Rightarrow3\left(14n+3\right)⋮d\Rightarrow42n+9⋮d\)
Vì
\(42n+8;42n+9⋮d\)
\(\Leftrightarrow\left(42n+9\right)-\left(42n+8\right)⋮d\)
\(\Leftrightarrow1⋮d\)
\(\Leftrightarrow\dfrac{21n+4}{14n+3}\)tối giản với mọi n
a) \(\dfrac{n+4}{n+3}=\dfrac{n+3+1}{n+3}=\dfrac{n+3}{n+3}+\dfrac{1}{n+3}=1+\dfrac{1}{n+3}\)
=> n+3 \(\in\) Ư(1) = {-1,1}
Ta có : n+3 = -1
n = (-1)-3
n = -4
n+3 = 1
n = 1-3
= -2
Vậy n = -4 hoặc -2
b) \(\dfrac{n-1}{n-2}=\dfrac{n-2+1}{n-2}=\dfrac{n-2}{n-2}+\dfrac{1}{n-2}=1+\dfrac{1}{n-2}\)
=> n-2 \(\in\) Ư(1) = {-1,1}
Ta có : +) n-2= -1
n=(-1)+2
n=1
+) n-2 = 1
n=1+2
n=3
Vậy n=1 hoặc 3
c) \(\dfrac{2n+3}{4n+7}\)
Gọi ƯCLN(2n+3,4n+7) = d
Ta có : 2n+3\(⋮\)d => 2(2n+3) = 4n+6 \(⋮\) d
4n+7 \(⋮\) d
=> (4n+6)-(4n+7) \(⋮\) d
=> -1 \(⋮\) d
=> d = Ư(-1) = {-1,1}
Để phân số tối giản
=> ƯC(4n+6,4n+7)=1
=> d = -1 hoặc 1
d) \(\dfrac{n^3+2n}{n^4+3n^2+1}\)
Gọi d là ƯCLN của n3+2n và n4+3n2+1
=> n3 + 2n chia hết cho d và n4 + 3n2 + 1 \(⋮\) d
=> n(n3 + 2n) = n4 + 2n2 \(⋮\) d
=> (n4 + 3n2 + 1) -(n4 + 2n2) = n2 + 1 \(⋮\) d
=> (n2 + 1)2 = n4 + 2n2 + 1 \(⋮\) d
=> (n4 + 3n2 + 1) - ( n4 + 2n2 + 1 ) = n2 \(⋮\) d
=> n2 + 1 - n2 = 1 \(⋮\) d
=> d = 1 hoặc d = - 1 Vậy phân số ban đầu là tối giản
ai giúp mik với