\(_{2017^{2018}}\)

b, \(7...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2017


a) 3^200 và 2^300
ta có:3^200=3^2x100=(3^2)^100=9^100
         2^300=2^3x100=(2^3)^100=8^100
vì 9>8 =>9^100>8^100
=>3^200>2^200
vậy...
b)125^5 và 25^7
ta có:125^5=(5^3)^5=5^15
         25^7=(5^2)^7=5^14
vì 15>14 =>5^15>5^14
=>125^5>25^7
vậy.....
c)9^20 và 27^13 
ta có:9^20=(3^2)^20=3^40
        27^13=(3^3)^13=3^39
vì 40>39 => 3^40>3^39
=>9^20>27^13
vậy....
d)3^54 và 2^81
ta có:3^54=3^6x9=(3^6)^9=729^9
        2^81=2^9x9=(2^9)^9=512^9
vì 729>512 =>729^9>512^9
=> 3^54>2^81
vậy.....
e)10^30 và 2^100
ta có: 10^30=10^3x10=(10^3)^10=1000^10
          2^100=2^10x10=(2^10)^10=1024^10
vì 1000<1024 =>1000^10<1024^10
=> 10^30<2^100
vậy....
f)5^40 và 620^10
ta có:5^40=5^4x10=(5^4)^10=625^10
vì 625>620 =>625^10>620^10
=>5^40>620^10
vậy....
ĐÓ LÀ CÁCH LÀM CỦA TỚ NẾU THẤY ĐÚNG THÌ K NHA.
 

10 tháng 7 2017

a) 3^200 = (3^2)^100 = 9^100

2^300 = (2^3)^100 = 8 ^100

Do 9>8 =>9^100 > 8^100=> 3^200> 2^300

b) 125^5 = (5^3)5 = 5^15

25^7 =  ( 5^2)^7 = 5^14 

Do 5^15 > 5^14 => 125^5 > 25^7 

26 tháng 6 2017

Trước tiên ta nên tìm kết quả :

=> có 99 số số hạng

Tổng của kết quả đó là : 

( 99 + 1 ) . 99 : 2 = 4950

Vậy ta có : 2-(x+3) = 4950

x+3 = 2 - 4950

x+3 = -4948

x = -4948 - 3

x = -4951

26 tháng 6 2017

2-x-3 = (1+99) +(2+98)+...+( 49+51)+ 50

-1-x = 10+10 +..+ 10 + 50

-1-x = 490+50

-x= 540 + 1

-x = 541

=> x= -541

29 tháng 6 2018

Từ 2 giả thiết: \(a+b+c=2018;\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{6}{2018}\)

\(\Rightarrow\left(a+b+c\right).\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)=\frac{2018.6}{2018}=6\)

\(\Leftrightarrow\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}=6\)

\(\Leftrightarrow1+\frac{c}{a+b}+1+\frac{a}{b+c}+1+\frac{b}{c+a}=6\)

\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=3\)

Vậy giá trị của biểu thức đó là 3.

1 tháng 7 2018

\(\frac{2}{2.3}\) +   \(\frac{2}{3.4}\) +  \(\frac{2}{4.5}\) + .......+ \(\frac{2}{x.\left(x+1\right)}\) = \(\frac{2017}{2019}\) 

2 . (  \(\frac{1}{2}\) -  \(\frac{1}{3}\) + \(\frac{1}{3}\) -  \(\frac{1}{4}\) + .......+  \(\frac{1}{x+1}\) ) = \(\frac{2017}{2019}\)

2 . ( \(\frac{1}{2}\) -  \(\frac{1}{x+1}\) ) = \(\frac{2017}{2019}\)

\(\frac{1}{2}\) -  \(\frac{1}{x+1}\) =  \(\frac{2017}{2019}\) : 2 

 \(\frac{1}{2}\) -  \(\frac{1}{x+1}\) = \(\frac{2017}{4038}\)

             \(\frac{1}{x+1}\)  =  \(\frac{1}{2}\)  -    \(\frac{2017}{4038}\)

              \(\frac{1}{x+1}\)  = \(\frac{1}{2019}\) 

     <=> x + 1 = 2019 => x = 2018

vậy x = 2018

1 tháng 7 2018

\(\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{x\left(x+1\right)}=\frac{2017}{2019}\)

\(\Leftrightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2017}{2019}\)

\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2017}{2019}\)

\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2017}{2019}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2017}{4038}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2019}\)

\(\Rightarrow x+1=2019\)

\(\Leftrightarrow x=2018\)

Vậy  \(x=2018\)

11 tháng 7 2018

tui o bít nhưng ai kb vs tui o

9 tháng 8 2017

1) ta có:\(2^{150}\)= (2^3)^50=8^50

\(3^{100}\)= (3^2)^50 = 9^50

vì 8^50 < 9^50 => \(2^{150}\)<\(3^{100}\)

10 tháng 8 2017

2^50=8^50

3^100=9^59

8^50<9^50

=>Đpcm

6 tháng 5 2017

\(\dfrac{1}{38}>\dfrac{1}{40}>\dfrac{1}{42}>...>\dfrac{1}{50}\)

=>\(\dfrac{1}{38}+\dfrac{1}{40}+\dfrac{1}{42}+\dfrac{1}{44}+\dfrac{1}{46}+\dfrac{1}{48}+\dfrac{1}{50}< 7\cdot\dfrac{1}{38}=\dfrac{7}{38}< 1\)

Vậy tổng trên bé hơn 1

A=-1-3-5-...-2017

=-(1+3+5+...+2017)

Xét tổng B=1+3+5+...+2017

Tổng B có:(2017-1):2+1=1009(số hạng)

Tổng B=\(\dfrac{\left(2017+1\right)\cdot1009}{2}=1009\cdot1009=1018081\)

=>A=-B=-1018081

6 tháng 5 2017

bn cho mk hỏi tai sao B lai = 1+3+5+..+2017 vay bn?

29 tháng 6 2018

Ta có 

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2018^2}\)  < \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\)

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2018^2}\)< 1 - \(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2018^2}\)< 1 - \(\frac{1}{2018}\)\(\frac{2017}{2018}\)< 1

Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2018^2}\)< 1 ( dpcm )

29 tháng 6 2018

Ta có:

\(\frac{1}{2^2}\)\(\frac{1}{1.2}\).

\(\frac{1}{3^2}\)\(\frac{1}{2.3}\).

\(\frac{1}{4^2}\)\(\frac{1}{3.4}\).

...

\(\frac{1}{2017^2}\)\(\frac{1}{2016.2017}\).

\(\frac{1}{2018^2}\)\(\frac{1}{2017.2018}\).

Từ trên ta có:

\(\frac{1}{2^2}\)\(\frac{1}{3^2}\)\(\frac{1}{4^2}\)+...+ \(\frac{1}{2017^2}\)\(\frac{1}{2018^2}\)\(\frac{1}{1.2}\)\(\frac{1}{2.3}\)\(\frac{1}{3.4}\)+...+ \(\frac{1}{2016.2017}\)\(\frac{1}{2017.2018}\)= 1- \(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{4}\)+...+ \(\frac{1}{2016}\)\(\frac{1}{2017}\)\(\frac{1}{2017}\)\(\frac{1}{2018}\)= 1- \(\frac{1}{2018}\)< 1.

=> \(\frac{1}{2^2}\)\(\frac{1}{3^2}\)\(\frac{1}{4^2}\)+...+ \(\frac{1}{2017^2}\)\(\frac{1}{2018^2}\)< 1.

=> ĐPCM.