K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2016

(a+b+c)(a2+b2+c2abacbc)(a+b+c)(a2+b2+c2−ab−ac−bc)

9 tháng 11 2016

cái này cần thêm 1 chút chi tiết nữa mới tuột :D

5 tháng 11 2021

Theo bài ra, ta có: a+b+c
Suy ra: 3(a+b+c)-3abc=0
Suy ra: -3abc=0
Tương đương: -3*(b+c)*(a+c)*(a+b)=0
Tương đương: -3* a^2+b^2+c^2=0
Tương đương: -3*0=0
Suy ra: nếu a+b+c=0 thì a3+b3+c3-3abc=0(đpcm)


 

1 tháng 11 2021

Sai rồi bạn ơi

 

13 tháng 2 2019

Từ đẳng thức đã cho suy ra a 3   +   b 3   +   c 3 – 3abc = 0

b 3   +   c 3 = (b + c)( b 2   +   c 2 – bc)

= (b + c)[ ( b   +   c ) 2 – 3bc]

= ( b   +   c ) 3 – 3bc(b + c)

=> a 3   +   b 3   +   c 3 – 3abc = a 3   +   ( b 3   +   c 3 ) – 3abc

ó a 3   +   b 3   +   c 3 – 3abc = a 3   +   ( b   +   c ) 3 – 3bc(b + c) – 3abc

ó a 3   +   ( b 3   +   c 3 ) – 3abc = (a + b + c)( a 2   –   a ( b   +   c )   +   ( b   +   c ) 2 ) – [3bc(b + c) + 3abc]

ó a 3   +   ( b 3   +   c 3 ) – 3abc = (a + b + c)( a 2   –   a ( b   +   c )   +   ( b   +   c ) 2 ) – 3bc(a + b + c)

ó a 3   +   ( b 3   +   c 3 ) – 3abc = (a + b + c)( a 2   –   a ( b   +   c )   +   ( b   +   c ) 2 – 3bc)

ó a 3   +   ( b 3   +   c 3 ) – 3abc = (a + b + c)( a 2 – ab  - ac + b 2 + 2bc + c 2   – 3bc)

ó a 3   +   ( b 3   +   c 3 ) – 3abc = (a + b + c)( a 2   +   b 2   +   c 2 – ab – ac – bc)

Do đó nếu a 3   +   ( b 3   +   c 3 ) – 3abc = 0 thì a + b + c  = 0 hoặc a 2   +   b 2   +   c 2 – ab – ac – bc = 0

Mà a 2   +   b 2   +   c 2 – ab – ac – bc = .[ ( a   –   b ) 2   +   ( a   –   c ) 2   +   ( b   –   c ) 2 ]

Nếu ( a   –   b ) 2   +   ( a   –   c ) 2   +   ( b   –   c ) 2 = 0 ó  suy ra a = b = c

Vậy a 3   +   ( b 3   +   c 3 ) = 3abc thì a = b = c hoặc a + b + c = 0

Đáp án cần chọn là: C

AH
Akai Haruma
Giáo viên
29 tháng 6 2023

Bài 1: 

$a^3+b^3+c^3=3abc$

$\Leftrightarrow (a+b)^3-3ab(a+b)+c^3-3abc=0$

$\Leftrightarrow [(a+b)^3+c^3]-[3ab(a+b)+3abc]=0$

$\Leftrightarrow (a+b+c)[(a+b)^2-c(a+b)+c^2]-3ab(a+b+c)=0$
$\Leftrightarrow (a+b+c)[(a+b)^2-c(a+b)+c^2-3ab]=0$

$\Leftrightarrow (a+b+c)(a^2+b^2+c^2-ab-bc-ac)=0$

$\Rightarrow a+b+c=0$ hoặc $a^2+b^2+c^2-ab-bc-ac=0$

Xét TH $a^2+b^2+c^2-ab-bc-ac=0$

$\Leftrightarrow 2(a^2+b^2+c^2)-2(ab+bc+ac)=0$

$\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0$
$\Rightarrow a-b=b-c=c-a=0$

$\Leftrightarrow a=b=c$

Vậy $a^3+b^3+c^3=3abc$ khi $a+b+c=0$ hoặc $a=b=c$

Áp dụng vào bài:

Nếu $a+b+c=0$

$A=\frac{-c}{c}+\frac{-b}{b}+\frac{-a}{a}=-1+(-1)+(-1)=-3$

Nếu $a=b=c$

$P=\frac{a+a}{a}+\frac{b+b}{b}+\frac{c+c}{c}=2+2+2=6$

29 tháng 8 2017

3 tháng 12 2016

có:a+b+c=0 suy ra :a+b= -c(1)

                             (a+b)^3= -c^3

                             a^3+3a^2b+3ab^2+3b^3+c^3=0

                             a^3+b^3+c^3+3ab(a+b)=0

                              a^3+b^3+c^3-3abc=0(Vì a+b= -c)

                             a^3+b^3+c^3       =3abc

22 tháng 8 2018

a) Áp dụng nhiều lần công thức \(\left(x+y\right)^3=x^3-y^3+3xy\left(x+y\right)\), ta có:

\(\left(a+b+c\right)^3-a^3-b^3-c^3\)

\(=\left[\left(a+b\right)+c\right]^3-a^3-b^3-c^3\)

\(=\left(a+b\right)^3+c^3+3c\left(a+b\right)\left(a+b+c\right)-a^3-b^3-c^3\)

\(=a^3+b^3+3ab\left(a+b\right)+c^3+3c\left(a+b\right)\left(a+b+c\right)-a^3-b^3-c^3\)

\(=3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)

\(=3\left(a+b\right)\left[a\left(b+c\right)+c\left(b+c\right)\right]\)

\(=3\left(a+b\right)\left(b+c\right)\left(a+c\right)\left(Đpcm\right)\)

b) Ta có:

\(a^3+b^3+c^3-3abc\)

\(=a^3+3ab\left(a+b\right)+b^2+c^3-3abc-3ab\left(a+b\right)\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ac-bc-ab\right)\)

Mình nghĩ bằng thế này mới đúng, bạn chắc ghi sai đề rồi bucminh

22 tháng 8 2018

a) Ta có: (a + b + c)3 - a3 - b3 - c3 = [ (a + b + c)3 - a3 ] - ( b3 + c3)

= (a + b + c - a) ( a2 + b2 + c2 + 2ab + 2bc + 2ac + a2 + ab + ac + a2) - (b + c) ( b2 - bc + c3)

= (b + c) ( 3a2 + b2 + c2 + 3ab + 2bc + 3ac) - (b + c) ( b2 - bc + c3)

= ( b + c) ( 3a2 + b2 + c2 + 3ab + 2bc + 3ac - b2 + bc - c3)

= ( b + c) ( 3a2 + 3ab + 3bc + 3ac)

= 3 (b + c) [a (a + b) + c (a + b)]

= 3 (b + c) (a + b) (a + c) (đpcm)

6 tháng 2 2018

Từ đẳng thức đã cho suy nghĩ a 3   +   b 3   +   c 3 – 3abc = 0

B 3   +   c 3   =   ( b   +   c ) ( b 2   +   c 2   –   b c )     =   ( b   +   c ) [ ( b   +   c ) 2   –   3 b c ] 4 =   ( b   +   c ) 3   –   3 b c ( b   +   c )

= >   a 3   +   b 3   +   c 3   –   3 a b c   =   a 3   +   ( b 3   +   c 3 )   –   3 a b c     ⇔   a 3   +   b 3   +   c 3   –   3 a b c   =   a 3   +   ( b 3   +   c 3 )   –   3 b c ( b   +   c )   –   3 a b c     ⇔   a 3   +   b 3   +   c 3   –   3 a b c   =   ( a   +   b   +   c ) ( a 2   –   a ( b   +   c )   +   ( b   +   c ) 2 )   –   [ 3 b c ( b   +   c )   +   3 a b c ]     ⇔   a 3   +   b 3   +   c 3   –   3 a b c   =   ( a   +   b   +   c ) ( a 2   –   a ( b   +   c )   +   ( b   +   c ) 2 )   –   3 b c )     ⇔   a 3   +   b 3   +   c 3   –   3 a b c   =   ( a   +   b   +   c ) ( a 2   –   a b   –   a c   +   b 2   +   2 b c   +   c 2   –   3 b c )     ⇔   a 3   +   b 3   +   c 3   –   3 a b c   =   ( a   +   b   +   c ) ( a 2   +   b 2   +   c 2   –   a b   –   a c   –   b c )

Do đó nếu a 3   +   b 3   +   c 3 – 3abc = 0 thì a + b + c = 0 hoặc a 2   +   b 2   +   c 2   – ab – ac – bc = 0

Mà a 2   +   b 2   +   c 2   – ab – ac – bc = .[ ( a   –   b ) 2   +   ( a   –   c ) 2   +   ( b   –   c ) 2 ]

Suy ra a = b = c

Đáp án cần chọn là: B

9 tháng 7 2019

Câu hỏi của trần thị bảo trân - Toán lớp 8 - Học toán với OnlineMath

Tham khảo ở link trên nhé.

9 tháng 7 2019

\(a+b+c=0\)

\(-a=b+c\)

\(\Rightarrow-a^3=\left(b+c\right)^3\)

\(\Rightarrow-a^3=b^3+c^3+3bc\left(b+c\right)\)

\(\Rightarrow a^3+b^3+c^3=3abc\)