K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 1 2024

Ta có:

\(A=\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{200}+\dfrac{1}{201}+\dfrac{1}{202}+...+\dfrac{1}{300}\)

Do: \(\dfrac{1}{101}< \dfrac{1}{100}\)\(\dfrac{1}{102}< \dfrac{1}{100}\); ...; \(\dfrac{1}{200}< \dfrac{1}{100}\)

\(\Rightarrow\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{200}< \dfrac{1}{100}+\dfrac{1}{100}+...+\dfrac{1}{100}\)

\(\Rightarrow\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{200}< \dfrac{100}{100}=1\) (1)

Lại có:

\(\dfrac{1}{201}< \dfrac{1}{200}\) ; \(\dfrac{1}{202}< \dfrac{1}{200}\) ;...;\(\dfrac{1}{300}< \dfrac{1}{200}\)

\(\Rightarrow\dfrac{1}{201}+\dfrac{1}{202}+...+\dfrac{1}{300}< \dfrac{1}{200}+\dfrac{1}{200}+...+\dfrac{1}{200}\)

\(\Rightarrow\dfrac{1}{201}+\dfrac{1}{202}+...+\dfrac{1}{300}< \dfrac{100}{200}=\dfrac{1}{2}\) (2)

Từ (1);(2) \(\Rightarrow\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{300}< 1+\dfrac{1}{2}\)

\(\Rightarrow A< \dfrac{3}{2}\)

14 tháng 2 2016

j mà  nhìu zu zậy làm bao giờ mới xong

14 tháng 2 2016

Ủng hộ mk đi các bạn
 

18 tháng 6 2017

1/ Ta có : tất cả các p/s ở tổng A đều có tử bằng 1 . Mà MS 101 < 102 ; 103 ; ... ; < 200 .

   Nên 1/101 là p/s lớn nhất ( lớn hơn 1/102 ; 1/103 ; ... ; 1/200 )

2/ Tổng A có phân số là : ( 200 - 101 ) : 1 + 1 = 100 (phân số ) .

Nếu thay cả 100 p/s bằng p/s lớn nhất : 1/101 thì tổng A = 1/101 . 100 = 100/101 < 1 .

=> 1/101 + 1/102 + 1/103 + ... + 1/200 ( 100p/s ) < 1/101 + 1/101 + 1/101 + ... + 1/101 (100 p/s ) < 1 .

Vậy : A < 1

16 tháng 3 2022
Đúng rồi
6 tháng 5 2016

a) Ta thấy: 1/2^2<1/1.2

              1/3^2<1/2.3

              1/4^2<1/3.4

              …………...

              1/100^2<1/99.100

=>A<1/1.2+1/2.3+1/3.4+…+1/99.100=99/100

Mà 99/100<1 =>  1/2+ 1/32 + 1/4+ ... + 1/1002<1

b)Ta thấy : 1/101+1/102+1/103+…+1/150>1/150+1/150+1/150+…+1/150(50 số hạng)

 =>A>50/150>1/3 (1)

 Ta thấy : 1/101+1/102+1/103+…+1/150<1/100+1/100+1/100+…+1/100(50 số hạng)

=>A<1/2 (2)

Từ (1) và (2) =>1/3<A<1/2

c) Ta thấy :  1/11 + 1/12 + 1/13 + ... + 1/20>1/20+1/20+1/20+…+1/20(10 số hạng)

=>1/11 + 1/12 + 1/13 + ... + 1/20>1/2

2 tháng 5 2020

S=\(\left(\frac{1}{101}+\frac{1}{102}+....+\frac{1}{110}\right)\)  + \(\left(\frac{1}{111}+...+\frac{1}{120}\right)\) + \(\left(\frac{1}{121}+...+\frac{1}{130}\right)\)

\(\frac{1}{110}.10+\frac{1}{120}.10+\frac{1}{130.10}=\)\(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}\)\(\frac{1}{12}+\frac{2}{12}=\frac{1}{4}\) ( TA CÓ:\(\frac{1}{11}+\frac{1}{13}>\frac{2}{12}\))

\(\Rightarrow S>\frac{1}{4}\)(1)

+)S=\(\left(\frac{1}{101}+\frac{1}{130}\right)+\left(\frac{1}{102}+\frac{1}{129}\right)+...+\) \(\left(\frac{1}{115}+\frac{1}{116}\right)\) (CÓ 15 Cặp)

=\(\left(\frac{231}{101.130}\right)+\left(\frac{231}{102.129}\right)+...+\)\(\left(\frac{231}{115.116}\right)\)=\(231.\left(\frac{1}{101.130}+\frac{1}{102.129}+...+\frac{1}{115.116}\right)\)

ta xét: tích 101.130 có giá trị nhỏ nhất,nên :

xét 101.129=(101+1).(101-1)=101.130-101+130-1=101.130+28>101.130

tương tự các cặp còn lại, vậy ta có:\(\frac{1}{101.130}+\frac{1}{120.129}+...+\frac{1}{115.116}< \frac{1}{101.130}.15\)

\(\Rightarrow S< 231.\frac{1}{101.130}.15=\frac{693}{2626}< \frac{91}{330}\left(2\right)\)

từ (1)và(2) \(\Rightarrow\)điều phải chứng  minh

19 tháng 6 2020

THANKS

  • A = 1/101 + 1/102 + 1/103 + ... + 1/150

        Ta có số hạng tử là (150 -101)/1+1=50 (hạng tử)

         =>A>1/150 x 50

         =>>50/150=1/3

         =.> A>1/3

  • A = 1/101 + 1/102 + 1/103 + ... + 1/150

       Chia ra 2 nhóm
        => A=(1/101+..+1/125)+(1/126+...+1/150)
          =>A> 2(1/101+...+1/125)
               Mak  1/101+...+1/125 >1/125 x 25=1/5
           =>A>2/5> 5/10
          =>A<1/2
Vậy 1/3<A<1/2
18 tháng 6 2017

Chưa hiểu lắm đề câu 1 :v thôi làm tạm câu 2 nhé (sửa lại đề câu 1 đi -_-)

Ta có : $\dfrac{1}{101}<\dfrac{1}{100};\dfrac{1}{102}<\dfrac{1}{100};...;\dfrac{1}{200}<\dfrac{1}{100}$

Vì A có 100 phân số : $(200-101):1+1=100$

$=>A<\dfrac{1}{100}.100=1$

18 tháng 6 2017

1/ \(\dfrac{1}{101}>\dfrac{1}{102};...;\dfrac{1}{101}>\dfrac{1}{200}\)

2/ Ta có: \(\left\{{}\begin{matrix}\dfrac{1}{101}< \dfrac{1}{100}\\...\\\dfrac{1}{200}< \dfrac{1}{100}\end{matrix}\right.\Rightarrow A=\dfrac{1}{101}+...+\dfrac{1}{200}< \dfrac{1}{100}+...+\dfrac{1}{100}\)

( 100 phân số \(\dfrac{1}{100}\) )

\(\Rightarrow A< \dfrac{1}{100}.100=1\)

\(\Rightarrowđpcm\)