\(\frac{2-x1}{x1}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2016

c) tim x1 và x2 theo ct; 

x1= 16 +can denta ....tu lam

d) c/a <0

lam dc roi chu 

3 tháng 11 2019

câu a bạn áp dụng hệ thức Viet rồi rút m và thay vào cái kia r tìm ra thôi

haha

3 tháng 11 2019

bạn làm help mik vs

24 tháng 2 2020

Theo định lý Vi-ét có :

\(\hept{\begin{cases}x_1+x_2=-m\\x_1x_2=-35\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x_1+x_2=-m\\7\cdot x_2=-35\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x_1+x_2=-m\\x_2=-5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}m=-\left(7-5\right)=-2\\x_2=-5\end{cases}}\)

P/s : E mới đọc cái định lý này, sai ở đâu thì mọi người cho e ý kiến với ạ :)) E cảm ơn !!

3 tháng 5 2019

bạn làm theo hướng dẫn mình nèâCho phÆ°Æ¡ng trình: x^2 - 2mx + 2m - 2 = 0 (1) (m là tham sá»),Giải phÆ°Æ¡ng trình (1) khi m = 1.,Toán há»c Lá»p 9,bài tập Toán há»c Lá»p 9,giải bài tập Toán há»c Lá»p 9,Toán há»c,Lá»p 9

3 tháng 5 2019

\(a,\Delta=m^2-4m+4=\left(m-2\right)^2\ge0\forall m\)

Nên pt đã cho luôn có 2 nghiệm phân biệt với mọi m

b, Theo Vi-ét \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=m-1\end{cases}}\)

Ta có \(B=\frac{2x_1x_2+3}{x_1^2+x_2^2+2\left(1+x_1x_2\right)}=1\)

\(\Leftrightarrow\frac{2x_1x_2+3}{\left(x_1+x_2\right)^2+2}=1\)

\(\Leftrightarrow\frac{2\left(m-1\right)+3}{m^2+2}=1\)

\(\Leftrightarrow\frac{2m+1}{m^2+2}=1\)

\(\Leftrightarrow2m+1=m^2+2\)

\(\Leftrightarrow m^2-2m+1=0\)

\(\Leftrightarrow\left(m-1\right)^2=0\)

\(\Leftrightarrow m=1\)

NV
19 tháng 4 2020

\(x^2-2mx+m-7=0\)

Phương trình đã cho luôn có 2 nghiệm pb

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m-7\end{matrix}\right.\)

a/ \(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=2m\\2x_1x_2=2m-14\end{matrix}\right.\)

Trừ vế cho vế: \(x_1+x_2-2x_1x_2=14\)

Đây là hệ thức liên hệ 2 nghiệm ko phụ thuộc m

\(\Rightarrow x_1\left(1-2x_2\right)=14-x_2\)

\(\Rightarrow x_1=\frac{14-x_2}{1-2x_2}\)

b/ \(\frac{1}{x_1^3}+\frac{1}{x_2^3}=\frac{x_1^3+x_2^3}{\left(x_1x_2\right)^3}=\frac{\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)}{\left(x_1x_2\right)^3}=\frac{8m^3-6m\left(m-7\right)}{\left(m-7\right)^3}\)

\(A=2\left(x_1^2+x_2^2\right)+x_1^2-2mx_1+m\)

Mặt khác do \(x_1\) là nghiệm nên

\(x_1^2-2mx_1+m=7\)

\(\Rightarrow A=2\left(x_1^2+x_2^2\right)+7=2\left(x_1+x_2\right)^2-4x_1x_2+7\)

\(=8m^2-4\left(m-7\right)+7=8m^2-4m+35\)

c/ Để pt có 2 nghiệm dương:

\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2>0\\x_1x_2>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2m>0\\m-7>0\end{matrix}\right.\) \(\Rightarrow m>7\)