Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\frac{x-y}{z-y}=-10\Leftrightarrow x-y=10\left(y-z\right)\)
\(\Leftrightarrow x-y=10y-10z\)
\(\Leftrightarrow x=11y-10z\)
Thay x=11y-10z vào biểu thức \(\frac{x-z}{y-z}\), ta có:
\(\frac{11y-10z-z}{y-z}=\frac{11y-11z}{y-z}=\frac{11\left(y-z\right)}{y-z}=11\)
Chá quá, có ghi nhìn không rõ đề
2) \(2x^2=9x-4\)
\(\Leftrightarrow2x^2-9x+4=0\)
\(\Leftrightarrow2x^2-8x-x+4=0\)
\(\Leftrightarrow2x\left(x-4\right)-1\left(x-4\right)\)
\(\Leftrightarrow\left(2x-1\right)\left(x-4\right)=0\)
\(\Leftrightarrow2x-1=0\) hoặc x-4=0
1) 2x-1=0<=>x=1/2
2)x-4=0<=>x=4(Loại)
=> x=1/2
Bài 2 :
a ) \(25-20x+4x^2=0\)
\(\Leftrightarrow\left(5-2x\right)^2=0\)
\(\Leftrightarrow5-2x=0\Rightarrow x=\dfrac{5}{2}\)
Vậy \(x=\dfrac{5}{2}\)
a,\(\left(-2x^2+3x\right)\left(x^2-x+3\right)\\ \Leftrightarrow-2x^4+2x^3-6x^2+3x^3-3x^2+9x\\ \Leftrightarrow-2x^4+5x^3-3x^2+3x\)
\(b,x\left(x-2\right)\left(x+2\right)-\left(x-3\right)\left(x^2+3x+9+6\right)+6\left(x+1\right)^2=15\\ \Leftrightarrow x\left(x^2-4\right)-\left(x^3-27\right)+6\left(x^2+2x+1\right)=15\\ \Leftrightarrow x^3-4x-x^3+27+6x^2+12x+6=15\\ \Leftrightarrow6x^2+8x+18=0\\ \Leftrightarrow6\left(x^2+\dfrac{4}{3}x+3\right)=0\\ \Leftrightarrow\left(x+\dfrac{2}{3}\right)^2+\dfrac{23}{9}=0\)
Với mọi x thì \(\left(x+\dfrac{2}{3}\right)^2\ge0\Rightarrow\left(x+\dfrac{2}{3}\right)^2+\dfrac{23}{9}>0\)
Do đó ko tìm đc giá trị nào của x thỏa mãn đề bài
Vậy..
b)x3-2x2-4xy2+x
=x(x2-2x-4y2+1)
=x[(x2-2x+1)-4y2]
=x[(x-1)2-4y2]
=x(x-1-2y)(x-1+2y)
c) (x+2)(x+3)(x+4)(x+5)-8
=[(x+2)(x+5)][(x+3)(x+4)]-8
=(x2+5x+2x+10)(x2+4x+3x+12)-8
=(x2+7x+10)(x2+7x+12)-8
đặt x2+7x+10 =a ta có
a(a+2)-8
=a2+2a-8
=a2+4a-2a-8
=(a2+4a)-(2a+8)
=a(a+4)-2(a+4)
=(a+4)(a-2)
thay a=x2+7x+10 ta đc
(x2+7x+10+4)(x2+7x+10-2)
=(x2+7x+14)(x2+7x+8)
bài 2 x3-x2y+3x-3y
=(x3-x2y)+(3x-3y)
=x2(x-y)+3(x-y)
=(x-y)(x2+3)
đề 1 bài 4
xét tam gics ABC và tam giác HBA có
góc B chung
góc BAC = góc BHA (=90 độ)
=> tam giác ABC đồng dạng vs tam giác HBA (g.g)
=> AB/HB=BC/AB=> AB^2=HB *BC
áp dụng đl py ta go trog tam giác vuông ABC có
BC^2 = AB^2 +AC^2=6^2+8^2=100
=> BC =\(\sqrt{100}\)=10 cm
ta có tam giác ABC đồng dạng vs tam giác HBA (cm câu a )
=> AC/AH=BC/BA=>AH=8*6/10=4.8CM
=>AB/BH=AC/AH=> BH=6*4.8/8=3,6cm
=>HC =BC-BH=10-3,6=6,4cm
dề 1 bài 1
5x+12=3x -14
<=>5x-3x=-14-12
<=>2x=-26
<=> x=-12
vạy S={-12}
(4x-2)*(3x+4)=0
<=>4x-2=0<=>x=1/2
<=>3x+4=0<=>x=-4/3
vậy S={1/2;-4/3}
đkxđ : x\(\ne2;x\ne-3\)
\(\dfrac{4}{x-2}+\dfrac{1}{x+3}=0\)
<=> 4(x+3)/(x-2)(x+3)+1(x-2)/(x-2)(x+3)
=> 4x+12+x-2=0
<=>5x=-10
<=>x=-2 (nhận)
vậy S={-2}
\(\left(x+a\right)\left(x+8\right)=x^2+bx+24\)
\(\Leftrightarrow x^2+ax+8x+8a=x^2+bx+24\)
\(\Leftrightarrow x^2+\left(8+a\right)x+8a=x^2+bx+24\)
=> 8a=24=>a=3
(8+a)=b Thay a=3=>b=11
=> a+b=3+11=14
\(x^4+x^3+x^2-1\)
\(=x^3\left(x+1\right)+\left(x^2-1\right)\)
\(=x^3\left(x+1\right)+\left(x-1\right)\left(x+1\right)\)
\(=\left(x^3+x-1\right)\left(x+1\right)\)
Bài làm
Bài 3
a) \(A=\left(x^2+\frac{4x^2}{x^2-4}\right)\cdot\left(\frac{x+2}{2x-4}+\frac{2-3x}{x^3-4x}\cdot\frac{x^2-4}{x-2}\right)\)
\(A=\left(x^2+\frac{4x^2}{x^2-4}\right)\cdot\left(\frac{x+2}{2\left(x-2\right)}+\frac{2-3x}{x\left(x^2-4\right)}\cdot\frac{x^2-4}{x-2}\right)\)
\(A=\left(x^2+\frac{4x^2}{x^2-4}\right)\cdot\left(\frac{x+2}{2\left(x-2\right)}+\frac{2-3x}{x\left(x-2\right)}\right)\)
\(A=\left(x^2+\frac{4x^2}{x^2-4}\right)\cdot\left(\frac{x\left(x+2\right)}{2x\left(x-2\right)}+\frac{2\left(2-3x\right)}{2x\left(x-2\right)}\right)\)
\(A=\left(x^2+\frac{4x^2}{x^2-4}\right)\cdot\frac{x^2+2x+4-6x}{2x\left(x-2\right)}\)
\(A=\left(x^2+\frac{4x^2}{x^2-4}\right)\cdot\frac{x^2-4x+4}{2x\left(x-2\right)}\)
\(A=\left(\frac{x^4-4x^2}{x^2-4}+\frac{4x^2}{x^2-4}\right)\cdot\frac{\left(x-2\right)^2}{2x\left(x-2\right)}\)
\(A=\frac{x^4}{\left(x-2\right)\left(x+2\right)}\cdot\frac{x-2}{2x}\)
\(A=\frac{x^3}{2\left(x+2\right)}\)
Vậy \(A=\frac{x^3}{2\left(x+2\right)}\)
b) Ta có: \(\left|2x-1\right|=3\)
<=> \(\orbr{\begin{cases}2x-1=3\\2x-1=-3\end{cases}}\)<=> \(\orbr{\begin{cases}2x=4\\2x=-2\end{cases}}\)<=> \(\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)
*) Với x = 2 thì ta thay x = 2 vào A ta được:
\(A=\frac{2^3}{2\left(2+2\right)}=\frac{8}{8}=1\)
Vậy với x = 2 thì A = 1
*) Với x = -1 thì ta thay x = -2 vào ta, ta được:
\(A=\frac{\left(-1\right)^3}{2\left(-1+2\right)}=\frac{-1}{2}\)
Vậy với x = -1 thì x = -1/2
Bài 2:
a) \(A=\left(\frac{x+2}{x^2+2x+1}-\frac{x-2}{x^2-1}\right):\frac{2x^2+x}{x^3+x^2-x-1}\)
\(A=\left(\frac{x+2}{\left(x+1\right)\left(x+1\right)}-\frac{x-2}{\left(x+1\right)\left(x-1\right)}\right):\frac{2x^2+x}{x^2\left(x+1\right)-\left(x+1\right)}\)
\(A=\left(\frac{\left(x+2\right)\left(x-1\right)}{\left(x+1\right)\left(x+1\right)\left(x-1\right)}-\frac{\left(x-2\right)\left(x+1\right)}{\left(x+1\right)\left(x-1\right)\left(x+1\right)}\right):\frac{2x^2+x}{\left(x+1\right)\left(x+1\right)\left(x-1\right)}\)
\(A=\left(\frac{x^2+2x-x-2}{\left(x+1\right)^2\left(x-1\right)}-\frac{x^2+x-2x-2}{\left(x+1\right)^2\left(x-1\right)}\right)\cdot\frac{\left(x+1\right)^2\left(x-1\right)}{x\left(2x+1\right)}\)
\(A=\frac{x^2+2x-x-2-x^2-x+2x+2}{\left(x+1\right)^2\left(x-1\right)}\cdot\frac{\left(x+1\right)^2\left(x-1\right)}{x\left(2x+1\right)}\)
\(A=4x-2x\cdot\frac{1}{x\left(2x+1\right)}\)
\(A=\frac{2x\left(2-1\right)}{x\left(2x+1\right)}\)
\(A=\frac{4-2}{2x+1}\)
\(A=\frac{2}{2x+1}\)
Để A xác định
<=> 2x + 1 khác 0
<=> 2x khác -1
<=> x khác -1/2
Vậy x khác -1/2 thì A xác định.
b) Thay x = -3 vào A ta được:
\(A=\frac{2}{2\left(-3\right)+1}=\frac{2}{-6+1}=\frac{2}{-5}\)
Vậy x = -3 thì A = 2/-5
Thay x = 1/4 vào A ta được
\(A=\frac{2}{2\cdot\frac{1}{4}+1}=\frac{2}{\frac{1}{2}+1}=\frac{2}{\frac{3}{2}}=2:\frac{3}{2}=2\cdot\frac{2}{3}=\frac{4}{3}\)
Vậy x = 1/4 thì A = 4/3
Vì x = -1/2 (Không thỏa mãn điều kiện)
Do đó với x = -1/2 thì A không xác định.
c) Để |A| = 3
<=> \(\left|\frac{2}{2x+1}\right|=3\)
<=> \(\orbr{\begin{cases}\frac{2}{2x+1}=3\\\frac{2}{2x+1}=-3\end{cases}\Leftrightarrow\orbr{\begin{cases}6x+3=2\\-6x-3=2\end{cases}\Leftrightarrow}\orbr{\begin{cases}6x=-1\\-6x=5\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-\frac{1}{6}\\x=-\frac{5}{6}\end{cases}}}\)
Vậy x = -1/6 hoặc x = -5/6 thì |A| = 3
\(A=\left(x^2+\frac{4x^2}{x^2-4}\right)\left(\frac{x+2}{2x-4}+\frac{2-3x}{x^3-4}.\frac{x^2-4}{x-2}\right)\)
\(=\left(\frac{x^2\left(x^2-4\right)}{x^2-4}+\frac{4x^2}{x^2-4}\right)\left(\frac{x+2}{2\left(x-2\right)}+\frac{\left(2-3x\right)\left(x^2-4\right)}{x\left(x^2-4\right)\left(x-2\right)}\right)\)
\(=\left(\frac{x^2\left(x^2-4\right)+4x^2}{x^2-4}\right)\left(\frac{x+2}{2\left(x-2\right)}+\frac{2-3x}{x\left(x-2\right)}\right)\)
\(=\left(\frac{x^4-4x^2+4x^2}{x^2-4}\right)\left(\frac{x\left(x+2\right)}{2x\left(x-2\right)}+\frac{2\left(2-3x\right)}{2x\left(x-2\right)}\right)\)
\(=\left(\frac{x^4}{x^2-4}\right)\left(\frac{x^2+2x+4-6x}{2x\left(x-2\right)}\right)=\left(\frac{x^4}{x^2-4}\right)\left(\frac{x^2-4x+4}{2x\left(x-2\right)}\right)\)
\(=\left(\frac{x^4}{x^2-4}\right)\left(\frac{\left(x-2\right)^2}{2x\left(x-2\right)}\right)=\left(\frac{x^4}{x^2-4}\right)\left(\frac{x-2}{2x}\right)=\frac{x^4.\left(x-2\right)}{\left(x^2-4\right)2x}\)
\(=\frac{x^4\left(x-2\right)}{\left(x-2\right)\left(x+2\right)2x}=\frac{x^3}{2\left(x+2\right)}\)
b,Ta có:\(\left|2x-1\right|=3\)
\(\Leftrightarrow2x-1=\pm3\)
\(\Leftrightarrow\orbr{\begin{cases}2x-1=3\\2x-1=-3\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}}\)
Với x=2 thì giá trị của A là:\(\frac{2^3}{2\left(2+2\right)}=1\)
Với x=-1 thì giá trị biểu thức là:\(\frac{\left(-1\right)^3}{-2\left(-1+2\right)}=-\frac{1}{2}\)