Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có \(P=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{4ab}+\frac{1}{4ab}+4ab\)
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{a^2+b^2}+\frac{1}{2ab}\geq \frac{4}{a^2+b^2+2ab}=\frac{4}{(a+b)^2}\geq 4\)
Áp dụng BĐT AM-GM: \(\frac{1}{4ab}+4ab\geq 2\).
Và \(1\geq a+b\geq 2\sqrt{ab}\rightarrow ab\leq \frac{1}{4}\)
Do đó \(P\geq 4+1+2=7\) hay \(P_{\min}=7\)
Dấu bằng xảy ra khi \(a=b=\frac{1}{2}\)
c)\(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)
=\(\dfrac{\sqrt{8-2\sqrt{7}}}{\sqrt{2}}-\dfrac{\sqrt{8+2\sqrt{7}}}{\sqrt{2}}\)
=\(\dfrac{\sqrt{\left(\sqrt{7}-1\right)^2}}{\sqrt{2}}-\dfrac{\sqrt{\left(\sqrt{7}+1\right)^2}}{\sqrt{2}}\)
=\(\dfrac{\left|\sqrt{7}-1\right|-\left|\sqrt{7}+1\right|}{\sqrt{2}}\)
=\(\dfrac{\sqrt{7}-1-\sqrt{7}-1}{\sqrt{2}}\)
=\(\dfrac{-2}{\sqrt{2}}\)
=\(-\sqrt{2}\)
Áp dụng BĐT \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)(Tự chứng minh BĐT này )
\(B\ge\dfrac{4}{\left(a+b\right)^2+1}\)
cảm ơn Định đã trả lời giúp mk . Nhưng bn làm sai rồi vì nếu làm như vậy sẽ ko tìm ra a, b
;v Đề tuyển sinh là theo mỗi tỉnh ;v searrch gg tỉnh nào mà chẳng có =))
Bài 3:
\(A=\sqrt{1-6x+9x^2}+\sqrt{9x^2-12x+4}\)
\(A=\sqrt{9x^2-3x-3x+1}+\sqrt{9x^2-6x-6x+4}\)
\(A=\sqrt{\left(3x-1\right)^2}+\sqrt{\left(3x-2\right)^2}\)
\(A=\left|3x-1\right|+\left|3x-2\right|\)
\(A=\left|3x-1\right|+\left|2-3x\right|\)
Áp dụng bất đẳng thức \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) ta có:
\(\left|3x-1\right|+\left|2-3x\right|\ge\left|3x-1+2-3x\right|\)
\(\Rightarrow\left|3x-1\right|+\left|2-3x\right|\ge\left|1\right|=1\)
Dấu "=" sảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}3x-1\ge0\\2-3x\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3x\ge1\\3x\le2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{3}\\x\le\dfrac{2}{3}\end{matrix}\right.\)
\(\Rightarrow\dfrac{1}{3}\le x\le\dfrac{2}{3}\)
Vậy............
Chúc bạn học tốt!!!
1 A\(=\sqrt{4\cdot5}-\sqrt{9\cdot5}+3\sqrt{9\cdot2}+\sqrt{36\cdot2}\)
\(=2\sqrt{5}-3\sqrt{5}+9\sqrt{2}+6\sqrt{2}\)
\(=\left(2\sqrt{5}-3\sqrt{5}\right)+\left(9\sqrt{2}+6\sqrt{2}\right)\)
\(=-\sqrt{5}+15\sqrt{2}\)