Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
=\(\sqrt{4+\sqrt{8}}.\sqrt{\left(2+\sqrt{2+\sqrt{2}}\right)\left(2-\sqrt{2+\sqrt{2}}\right)}\)
=\(\sqrt{4+\sqrt{8}}.\sqrt{2^2-\sqrt{\left(2+\sqrt{2}\right)^2}}\)
=\(\sqrt{4+2\sqrt{2}}.\sqrt{4-2-\sqrt{2}}\)
=\(\sqrt{2\sqrt{2}\left(\sqrt{2}+1\right)}.\sqrt{\sqrt{2}\left(\sqrt{2}-1\right)}\)
\(\sqrt{4\left(2-1\right)}=2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bạn đúng là 1 người tốt bụng , quan tâm tới bạn bè , chắc chắn mọi điều tốt sẽ đến vs bạn
Mặc dù mk ko bt bạn Hạ Thì là aiNNhưng mk chúc mừng sinh nhật bạn ấy
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét tứ giác ADHE có: \(\widehat{ADH}=90\)
\(\widehat{DAE}=90\)
\(\widehat{AEH}=90\)
=> Tứ giác ADHE là hình chữ nhật
=>DE=AH
Áp dụng hệ thức liên quan tới đường cao ta có:
\(AH^2=HB\cdot HC=2\cdot8=16\)
=>AH=4
=>DE=AH=4
b)Gọi O là giao điểm của AH và DE
Vì ADHE là hình chữ nhật
=>OD=OA
=>ΔOAD cân tại O
=>\(\widehat{OAD}=\widehat{ODA}\)
Xét ΔABH vuông tại H(gt)
=>\(\widehat{BAH}+\widehat{B}=90\) (1)
Xét ΔABC vuông tại A(gt)
=>\(\widehat{B}+\widehat{C}=90\) (2)
Từ (1) (2) suy ra: \(\widehat{BAH}=\widehat{C}\)
Mà: \(\widehat{OAD}=\widehat{ODA}\) (cmt)
=> \(\widehat{ADE}=\widehat{ACB}\)
Xét ΔADE và ΔACB có
\(\widehat{DAE}=\widehat{CAB}=90\left(gt\right)\)
\(\widehat{ADE}=\widehat{ACB}\left(cmt\right)\)
=>ΔADE~ΔACB
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
a/ ĐKXĐ: \(x\ge0,x\ne1\)
\(A=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
= \(\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}+\dfrac{2-3\sqrt{x}}{\sqrt{x}-1}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
= \(\dfrac{15\sqrt{x}-11+\left(\sqrt{x}+3\right)\left(2-3\sqrt{x}\right)-\left(\sqrt{x}-1\right)\left(2\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
= \(\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
= \(\dfrac{\left(\sqrt{x}-1\right)\left(2-5\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
= \(\dfrac{2-5\sqrt{x}}{\sqrt{x}+3}\)
b/ Với \(x\ge0,x\ne1\)
Xét hiệu \(A-\dfrac{2}{3}=\dfrac{2-5\sqrt{x}}{\sqrt{x}+3}-\dfrac{2}{3}\)
= \(\dfrac{3\left(2-5\sqrt{x}\right)-2\left(\sqrt{x}+3\right)}{3\left(\sqrt{x}+3\right)}\)
= \(\dfrac{-17\sqrt{x}}{3\left(\sqrt{x}+3\right)}\)
Ta có: \(-17\sqrt{x}\le0\) với mọi \(x\ge0\)
\(3\left(\sqrt{x}+3\right)>0\) với mọi \(x\ge0\)
\(\Rightarrow\dfrac{-17\sqrt{x}}{3\left(\sqrt{x}+3\right)}\le0\)
\(\Leftrightarrow A-\dfrac{2}{3}\le0\Leftrightarrow A\le\dfrac{2}{3}\) (đccm)
Vậy \(A\le\dfrac{2}{3}\)
Hung nguyen Ace Legona Hoang Hung Quan Xuân Tuấn Trịnh soyeon_Tiểubàng giải