K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2020

Vì |2x-3| - |3x+2| = 0

Suy ra |2x-3|=|3x+2|

Ta có 2 trường hợp:

+)Trường hợp 1: Nếu 2x-3=3x+2

2x-3=3x+2

-3-2=3x-2x

-2=x

+)Trường hợp 2: Nếu 2x-3=-(3x+2)

2x-3=-(3x+2)

2x-3=-3x-2

2x+3x=3-2

5x=1

x=1/5

Vậy x thuộc {-1,1/5}

21 tháng 12 2021

(2x - 3) - ( 3x + 2) = 0

tính trong ngoặc trước ngoài ngoặc sau

2x - 3 ko phải là 2 nhân âm 3.

2x = 2 nhân x

( 2x - 3) - ( 3x + 2) = 0 có nghĩa là 2x -3 = 3x + 2

còn đâu tự giải nhé

8 tháng 10 2020

\(\hept{\begin{cases}2x=5y\\3x+4y=46\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{5}}\\3x+4y=46\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{3x}{\frac{3}{2}}=\frac{4y}{\frac{4}{5}}\\3x+4y=46\end{cases}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{3x}{\frac{3}{2}}=\frac{4y}{\frac{4}{5}}=\frac{3x+4y}{\frac{3}{2}+\frac{4}{5}}=\frac{46}{\frac{23}{10}}=20\)

\(\frac{3x}{\frac{3}{2}}=20\Rightarrow3x=30\Rightarrow x=10\)

\(\frac{4y}{\frac{4}{5}}=20\Rightarrow4y=16\Rightarrow y=4\)

8 tháng 10 2020

2.x=5.y   = \(\frac{X}{5}\)=\(\frac{Y}{2}\)=\(\frac{3x+4Y}{3.5+4.2}\)=\(\frac{46}{23}\)=2

\(\frac{X}{5}\)=2 => x=2.5=10

\(\frac{Y}{2}\)=2 =>y=2.2=4

9 tháng 2 2016

theo cách khác hổng được hả

 

24 tháng 12 2015

mik giải ko ghi đề nha

x+2+2x+1=4x

2+1=4x-x-2x

3=1x

3:1=x

3=x

vậy x=3

31 tháng 10 2019

\(3\sqrt{x}-2x=0\)

\(\Leftrightarrow3\sqrt{x}=2x\)

\(\Leftrightarrow\sqrt{x}=\frac{2x}{3}\)

\(\Leftrightarrow\left(\sqrt{x}\right)^2=\frac{4x^2}{9}\)

\(\Leftrightarrow x=\frac{4x^2}{9}\)

\(\Leftrightarrow\frac{4x^2}{x}=9\)

\(\Leftrightarrow4x=9\)

\(\Leftrightarrow x=\frac{9}{4}\)

31 tháng 10 2019

\(3\sqrt{x}-2x=0\)

\(\Leftrightarrow9x-4x^2=0\)

\(\Leftrightarrow x\left(9-4x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\9-4x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{9}{4}\end{cases}}}\)

11 tháng 4 2018

ko hiểu gì luôn

11 tháng 4 2018

\(A=x^2+3x+3=x^2+2\cdot\frac{3}{2}\cdot x+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+3\)

=> \(A=\left(x+\frac{3}{2}\right)^2+\frac{3}{4}\)

Vì \(\left(x+\frac{3}{2}\right)^2\ge0\) => \(A=\left(x+\frac{3}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)

=> Đa thức A vô nghiệm.