Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các hệ thức về cạnh và đường cao là:
\(DE^2=EH\cdot EF\); \(DF^2=FH\cdot FE\)
\(DH^2=HE\cdot HF\)
\(DH\cdot FE=DE\cdot DF\)
\(\dfrac{1}{DH^2}=\dfrac{1}{DE^2}+\dfrac{1}{DF^2}\)
Đạt tên cho tam giác vuông tà ABC vuông tại A có đường cao AH
Giải:
Áp dụng định lý Pitago ta có:
\(AB^2+AC^2=BC^2\)
\(hay:5^2+7^2=BC^2\)
\(\Rightarrow BC=\sqrt{5^2+7^2}=\sqrt{74}\left(cm\right)\)
Xét \(\Delta ABC,\widehat{A}=90^o,AH\perp BC\)
Áp dụng hệ thức lượng trong tam giác vuông ta có:
\(AB.AC=AH.BC\)
hay \(5.7=AH.\sqrt{74}\)
\(\Rightarrow AH\approx4,06\left(cm\right)\)
1. Ta có : sin2anpha + cos2anpha=1
=> (0.6)2 + cos2anpha =1
=> 0.36 + cos2anpha = 1
=> cos2anpha = 0.64
=>cos anpha =0.8
\(a,AH^2=BH.BC\)
\(b,\)Áp dụng hệ thức lượng vào \(\Delta ABC\) vuông tại \(A\),đường cao \(AH\) có:
\(AH^2=BH.BC\)
\(\Rightarrow AH^2=4.9\)
\(\Rightarrow AH^2=36\Rightarrow AH=6\left(cm\right)\)
1/ah2=1/AB2 +1/AC2