\(\dfrac{a}{b}=\dfrac{c...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2021

Quang Nhân                       Nguyễn Lê Phước Thịnh

2 tháng 4 2021

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{b}+1=\dfrac{c}{d}+1\Rightarrow\dfrac{a+b}{b}=\dfrac{c+d}{d}\)

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{b}{a}=\dfrac{d}{c}\Rightarrow\dfrac{b}{a}+1=\dfrac{d}{c}+1\Rightarrow\dfrac{b+a}{a}=\dfrac{c+d}{c}\Rightarrow\dfrac{a}{b+a}=\dfrac{c}{c+d}\)

13 tháng 4 2019

Bạn nhân chéo rồi PTNT là ok

16 tháng 11 2022

a: ad=bc

=>a/b=c/d=k

=>a=bk; c=dk

b: \(\dfrac{a+c}{b+d}=\dfrac{bk+dk}{b+d}=k\)

a/b=bk/b=k

=>(a+c)/(b+d)=a/b

c: ad=bc

nên a/c=b/d

d: \(\dfrac{a+b}{b}=\dfrac{bk+b}{b}=k+1\)

\(\dfrac{c+d}{d}=\dfrac{dk+d}{d}=k+1\)

=>\(\dfrac{a+b}{b}=\dfrac{c+d}{d}\)

27 tháng 3 2018

\(\dfrac{a}{b}< \dfrac{a+c}{b+c}\)

\(\Leftrightarrow a\left(b+c\right)< b\left(a+c\right)\)

\(\Leftrightarrow ab+ac< ba+bc\)

\(\Leftrightarrow ac< bc\)

\(\Leftrightarrow a< b\)(đúng)

a)Áp dụng

\(\Rightarrow\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \dfrac{a+c}{a+b+c}+\dfrac{b+a}{a+b+c}+\dfrac{c+b}{a+b+c}=2\left(1\right)\)

Lại có:\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}>\dfrac{a}{a+b+c}+\dfrac{b}{b+c+a}+\dfrac{c}{c+a+b}=1\left(2\right)\)

Từ (1) và (2)=> đpcm

27 tháng 3 2018

\(\dfrac{a}{b}< 1\Rightarrow a< b\Rightarrow ac< bc\Rightarrow ac+ab< bc+ab\Rightarrow a\left(b+c\right)< b\left(a+c\right)\Rightarrow\dfrac{a\left(b+c\right)}{b\left(b+c\right)}< \dfrac{b\left(a+c\right)}{b\left(b+c\right)}\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+c}\)a) ta có

\(\dfrac{a}{a+b+c}+\dfrac{b}{a+b+c}+\dfrac{c}{a+b+c}< \dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \dfrac{a+c}{a+b+c}+\dfrac{a+b}{a+b+c}+\dfrac{b+c}{a+b+c}\)\(\Leftrightarrow\dfrac{a+b+c}{a+b+c}< \dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \dfrac{2\left(a+b+c\right)}{a+b+c}\)

\(\Leftrightarrow1< \dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< 2\)

28 tháng 6 2017

Tính chất cơ bản của phân thức

29 tháng 3 2017

Ta có:

a/ \(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{3a}{3b}=\dfrac{2c}{2d}=\dfrac{3a+2c}{3b+2d}\)

b/ \(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{-2a}{-2b}=\dfrac{7c}{7d}=\dfrac{-2a+7c}{-2b+7d}\)

PS: Xong

29 tháng 3 2017

Y chang câu mới giải nhé

a: Đặt a/b=c/d=k

=>a=bk; c=dk

\(\dfrac{a-c}{c}=\dfrac{bk-dk}{dk}=\dfrac{b-d}{d}\)

b: \(\dfrac{a+b}{c+d}=\dfrac{bk+b}{dk+d}=\dfrac{b}{d}\)

\(\dfrac{a-b}{c-d}=\dfrac{bk-b}{dk-d}=\dfrac{b}{d}\)

Do đó: \(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)

15 tháng 3 2017

Lớp 8:Thì cái này hiển đúng: \(\dfrac{a}{a+k}>\dfrac{a}{a+p}\forall a,p>k>0\)

\(A>\dfrac{a}{a+b+c+d}+\dfrac{b}{a+b+c+d}+\dfrac{c}{a+b+c+d}+\dfrac{d}{a+b+c+d}=\dfrac{a+b+c+d}{a+b+c+d}=1\)

Vậy: \(A>1\)

Tương tự:

\(A< \dfrac{a+d}{a+b+c+d}+\dfrac{b+a}{a+b+c+d}+\dfrac{c+b}{a+b+c+d}+\dfrac{d+c}{a+b+c+d}=\dfrac{2\left(a+b+c+d\right)}{a+b+c+d}=2\)

Vậy: A<2

Kết luận: \(1< A< 2\)

p/s: bài giải này chỉ đúng với lớp 8; nếu lớp 6 bài giải này chưa đúng.

Đặt a/b=c/d=k

=>a=bk; c=dk

1: \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=k^2\)

\(\dfrac{ac}{bd}=\dfrac{bk\cdot dk}{bd}=k^2\)

Do đó; \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{ac}{bd}\)

2: \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=k^2\)

\(\dfrac{a^2-c^2}{b^2-d^2}=\dfrac{b^2k^2-d^2k^2}{b^2-d^2}=k^2\)

Do đó: \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{a^2-c^2}{b^2-d^2}\)

19 tháng 3 2018

Ta có :

\(\dfrac{a}{b}< \dfrac{c}{d}\)

\(\Rightarrow\dfrac{a}{b}-\dfrac{c}{d}< 0\)

\(\Rightarrow\dfrac{ad-bc}{bd}< 0\)

Mà \(bd>0\) (do b,d dương)

\(\Rightarrow\left\{{}\begin{matrix}ad-bc< 0\\bd>0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}ad< bc\\bd>0\end{matrix}\right.\)

\(\Rightarrow\dfrac{bd}{ad}>\dfrac{bd}{bc}\)

\(\Rightarrow\dfrac{b}{a}>\dfrac{d}{c}\)

\(\rightarrowđpcm\)