Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\frac{16^3.3^{10}+120.6^9}{4^6.3^{12}+6^{11}}\)
\(=\frac{\left(2^4\right)^3.3^{10}+2^3.3.5.\left(2.3\right)^9}{\left(2^2\right)^6.3^{12}+\left(2.3\right)^{11}}\)
\(=\frac{2^{12}.3^{10}+2^3.3.5.2^9.3^9}{2^{12}.3^{12}+2^{11}.3^{11}}\)
\(=\frac{2^{12}.3^{10}+2^{12}.3^{10}.5}{2^{11}.3^{11}\left(2.3+1\right)}\)
\(=\frac{2^{12}.3^{10}\left(1+5\right)}{2^{11}.3^{11}.7}=\frac{2.6}{3.7}=\frac{4}{7}\)
\(Q=2002:\left[\frac{\frac{2}{5}-\frac{2}{9}+\frac{2}{11}}{\frac{7}{5}-\frac{7}{9}+\frac{7}{11}}.\frac{-\frac{7}{6}+\frac{7}{8}-\frac{7}{10}}{\frac{1}{3}-\frac{1}{4}+\frac{1}{5}}\right]=2002:\left[\frac{2.\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{11}\right)}{7\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{11}\right)}.\frac{-\frac{7}{2}.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{5}\right)}{\frac{1}{3}-\frac{1}{4}+\frac{1}{5}}\right]=2002:\left[\frac{2}{7}.\frac{-7}{2}\right]=2002.\left(-1\right)=-2002\)
\(A=\left[0,8\cdot7+(0,8)^2\right]\cdot\left[1,25\cdot7-\frac{4}{5}\cdot1,25\right]-47,86\)
\(=0,8\cdot(7+0,8)\cdot1,25\cdot(7-0,8)-47,86\)
\(=0,8\cdot7,8\cdot1,25\cdot6,2-47,86\)
\(=48,36-47,86=0,5\)
\(B=\frac{(1,09-0,29)\cdot\frac{5}{4}}{(18,9-16,65)\cdot\frac{8}{9}}=\frac{0,8\cdot1,25}{2,25\cdot\frac{8}{9}}=\frac{1}{2}\)
\(A:B=0,5:\frac{1}{2}=\frac{1}{2}:\frac{1}{2}=\frac{1}{2}\cdot2=1\)
A gấp 1 lần B
a, \(\frac{1}{4}+\frac{5}{12}-\frac{1}{13}-\frac{7}{8}\)
\(=\left(\frac{1}{4}+\frac{5}{12}\right)-\left(\frac{1}{13}+\frac{7}{8}\right)\)
\(=\frac{2}{3}-\frac{99}{104}\)
\(=-\frac{89}{312}\)
b, \(11\frac{3}{13}-2\frac{4}{7}+5\frac{3}{13}\)
\(=\left(11\frac{3}{13}+5\frac{3}{13}\right)-2\frac{4}{7}\)
\(=\frac{214}{13}-\frac{18}{7}\)
\(=\frac{1264}{91}\)
c, \(\left(6\frac{4}{9}+3\frac{7}{11}\right)-4\frac{4}{9}\)
\(=6\frac{4}{9}+3\frac{7}{11}-4\frac{4}{9}\)
\(=\left(6\frac{4}{9}-4\frac{4}{9}\right)+3\frac{7}{11}\)
\(=2+3\frac{7}{11}\)
\(=5\frac{7}{11}\)
\(=\frac{62}{11}\)
d, \(\left(6,17+3\frac{5}{9}-2\frac{36}{97}\right)\left(\frac{1}{3}-0,25-\frac{1}{12}\right)\)
\(=\left(6,17+3\frac{5}{9}-2\frac{36}{97}\right)\left(\frac{1}{3}-\frac{1}{4}-\frac{1}{12}\right)\)
\(=\left(6,17+3\frac{5}{9}-2\frac{36}{97}\right)\cdot0\)
\(=0\)
e, \(-1,5\cdot\left(1+\frac{2}{3}\right)\)
\(=-\frac{3}{2}\cdot\frac{5}{3}\)
\(=-\frac{5}{2}\)
f, Đặt \(A=1^2+2^2+3^2+...+100^2\)
\(=1+2\left(3-1\right)+3\left(4-1\right)+...+100\left(101-1\right)\)
\(=1+2\cdot3-2+3\cdot4-3+...+100\cdot101-100\)
\(=\left(2\cdot3+3\cdot4+...+100\cdot101\right)-\left(1+2+3+...+100\right)\)
Đặt B = 2 . 3 + 3 . 4 + ... + 100 . 101
3B = 2 . 3 ( 4 - 1 ) + 3 . 4 ( 5 - 2 ) + ... + 100 . 101 . ( 102 - 99 )
3B = 2 . 3 . 4 - 1 . 2 . 3 + 3 . 4 . 5 - 2 . 3 . 4 + ... + 100 . 101 . 102 - 99 . 100 . 101
3B = 100 . 101 . 102
B = \(\frac{100\cdot101\cdot102}{3}\)
B = 343400
Thay B vào A. Ta được :
\(A=343400-\left(1+2+3+...+100\right)\)
Thay C = 1 + 2 + 3 + ... + 100
Dãy số 1; 2; 3; ...; 100 có số số hạng là:
( 100 - 1 ) : 1 + 1 = 100 ( số hạng )
Tổng của dãy số đó là :
( 100 + 1 ) . 100 : 2 = 5050
=> C = 5050
Thay C vào A. Ta được :
\(A=343400-5050\)
\(A=338350\)
Vậy A = 338350
\(A=\frac{15}{34}+\frac{7}{21}+\frac{9}{34}-1\frac{15}{17}+\frac{2}{3}=\frac{15}{34}+\frac{7}{21}+\frac{9}{34}-\frac{64}{34}+\frac{14}{21}=\left(\frac{15}{34}+\frac{9}{34}-\frac{64}{34}\right)+\left(\frac{7}{21}+\frac{14}{21}\right)=\frac{30}{34}+\frac{21}{21}=\frac{15}{17}+1=\frac{32}{17}\)