K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2021

Theo định lý Pitago ta có:
\(BC^2=AB^2+AC^2\)
=>\(17^2=8^2+AC^2\)
\(=>AC^2=225\)
=>AC=\(\sqrt{225=}15\)
Theo định lí Pitago ta có:
\(36^2+15^2=39^2\)
=>DA=39
AB+BC+CD+DA=8+17+36+39=100

 

31 tháng 10 2021

A O x y t 80 M 100 B Z

Nhận thấy : \(\widehat{xOy}+\widehat{OAt}=100^{\text{o}}+80^{\text{o}}=180^{\text{o}}\)

=> Oy // At 

mà M \(\in Oy\)

=> OM // At

2) Xét tam giác AMB vuông tại B có 

\(\widehat{MAB}+\widehat{AMB}=90^{\text{o}}\)

<=> \(\widehat{AMB}=90^{\text{o}}-\widehat{MAB}=90^{\text{o}}-50^{\text{o}}=40^{\text{o}}\)

3) \(\widehat{OMA}=\widehat{MAB}=50^{\text{o}}\left(2\text{ góc slt}\right)\)

Xét tam giác OMZ vuông tại Z 

=> \(\widehat{OMZ}+\widehat{MOZ}=90^{\text{o}}\Rightarrow\widehat{MOZ}=90^{\text{o}}-\widehat{OMZ}=90^{\text{o}}-50^{\text{o}}=40^{\text{o}}=\frac{1}{2}\widehat{O}\)

=> OZ là tia phân giác của \(\widehat{O}\)

19 tháng 10 2017

chẳng nhìn thấy j cả!oho Thông cảm mk bị cận!gianroi

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

BD=CE
\(\widehat{ABD}=\widehat{ACE}\)

Do đó: ΔABD=ΔACE

Suy ra: AB=AC

hay ΔABC cân tại A

b: XétΔABC có 

AD là đường cao

CH là đường cao

AD cắt CH tại D

Do đó: D là trực tâm của ΔABC

=>BD vuông góc với AC

28 tháng 7 2017

Bài 1:

x y m B A C 1 1 2 1

Qua B, vẽ tia Bm sao cho Bm // Ax

Bm // Ax ( cách vẽ ) => góc A1 + góc B1 = 180o ( trong cùng phía )

Mà góc A1 = 140o ( giả thiết ) => góc B1 = 40o

Ta có: góc B1 + góc B2 = góc ABC

Mà góc ABC = 70o ( giả thiết ); góc B1 = 40o ( chứng minh trên )

=> góc B2 = 30o

Ta có: góc B2 + góc C1 = 30o + 150o = 180o

Mà hai góc này ở vị trí trong cùng phía

=> Bm // Cy ( dấu hiệu nhận biết 2 đường thẳng song song )

Ta lại có:

Ax // Bm ( cách vẽ ); Cy // Bm ( chứng minh trên )

=> Ax // Cy ( tính chất 3 quan hệ từ vuông góc đến song song ) ( đpcm )

Bài 3:

A B C F E G N M H 1 2

a) Chứng minh AH < \(\dfrac{1}{2}\) ( AB + AC )

+) Vì AH vuông góc với BC ( giả thiết )

=> AH < AB ( quan hệ giữa đường vuông góc và đường xiên ) ( 1 )

+) Vì AH vuông góc với BC ( giả thiết )

=> AH < AC ( quan hệ giữa đường vuông góc và đường xiên ) ( 2 )

+) Từ ( 1 ) và ( 2 ) => AH + AH < AB + AC

=> 2 . AH < AB + AC

=> AH < \(\dfrac{1}{2}\) ( AB + AC ) ( đpcm )

b) Chứng minh EF = BC

+) Vì BM là đường trung tuyến của tam giác ABC ( giả thiết )

=> \(\dfrac{BG}{BM}=\dfrac{2}{3}\)

=> \(\dfrac{MG}{BG}=\dfrac{1}{2}\)

=> 2 . MG = BG

Mà EM = MG ( do BM là đường trung tuyến của tam giác ABC )

=> EM + MG = BG => EG = BG

+) Vì CN là đường trung tuyến của tam giác ABC ( giả thiết )

=> \(\dfrac{CG}{CN}=\dfrac{2}{3}\)

=> \(\dfrac{GN}{CG}=\dfrac{1}{2}\)

=> 2 . GN = CG

Mà FN = GN ( do CN là đường trung tuyến của tam giác ABC )

=> FN + GN = CG => FG = CG

Góc G1 = góc G2 ( đối đỉnh )

Xét tam giác FEG và tam giác CBG có:

FG = CG ( chứng minh trên )

EG = BG ( chứng minh trên )

Góc G1 = góc G2 ( chứng minh trên )

=> tam giác FEG = tam giác CBG ( c.g.c )

=> EF = BC ( 2 cạnh tương ứng ) ( đpcm )

23 tháng 3 2017

\(\left\{{}\begin{matrix}\widehat{CBA}< 135\Rightarrow\widehat{ABD}>45\Rightarrow\widehat{BAD}< 45\Rightarrow BD< DA\\\widehat{ACD}< 45\Rightarrow\widehat{CAD}>45\Rightarrow AD< CD\\\end{matrix}\right.\)

24 tháng 3 2017

Làm toán hình thì phải lập luận rõ ràng, trong toán hình cái điểm lập luận là cao nhất, nếu không có thì 0 điểm, chế làm như vậy có phải đẩy người ta xuống 0 điểm không? Làm ơn bỏ ngay cái ngoặc tròn (và) của lớp 8 đi!

27 tháng 2 2017

C=11+22+33+....+999999+10001000

Ta có:

10001000<C<10001+10002+10003+.......+10001000

3000 chữ số 0 < C < 3001 chữ số

\(\Rightarrow\) 3 chữ số đầu tiên của C là:100

27 tháng 2 2017

Vậy còn \(999^{999}....vv\)Thì sao bạn???

23 tháng 4 2017

Giải:

Do \(\left(2016a+13b-1\right)\left(2016^a+2016a+b\right)\) \(=2015\)

Nên \(2016a+13b-1\)\(2016^a+2016a+b\) là 2 số lẻ \((*)\)

Ta xét 2 trường hợp:

Trường hợp 1: Nếu \(a\ne0\) thì \(2016^a+2016a\) là số chẵn

Do \(2016^a+2016a+b\) lẻ \(\Rightarrow b\) lẻ

Với \(b\) lẻ \(\Rightarrow13b-1\) chẵn do đó \(2016a+13b-1\) chẵn (trái với \((*)\))

Trường hợp 2: Nếu \(a=0\) thì:

\(\left(2016.0+13b-1\right)\left(2016^0+2016.0+b\right)\) \(=2015\)

\(\Leftrightarrow\left(13b-1\right)\left(b+1\right)=2015=1.5.13.31\)

Do \(b\in N\Rightarrow\left(13b-1\right)\left(b+1\right)=5.403=13.155\) \(=31.65\)

\(13b-1>b+1\)

\(*)\) Nếu \(b+1=5\Rightarrow b=4\Rightarrow13b-1=51\) (loại)

\(*)\) Nếu \(b+1=13\Rightarrow b=12\Rightarrow13b-1=155\) (chọn)

\(*)\) Nếu \(b+1=31\Rightarrow b=30\Rightarrow13b-1=389\) (loại)

Vậy \(\left(a,b\right)=\left(0;12\right)\)

b: |2x-1|<5

=>2x-1>-5 và 2x-1<5

=>2x>-4 và 2x<6

=>-2<x<3

mà x là số nguyên dương

nên \(x\in\left\{1;2\right\}\)

5 tháng 8 2021
Không có ai bùn qué 😞
5 tháng 8 2021

sorry chị em mới lớp 6 nên ko biết làm mong chị thông cảm ạ