Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
"Khi ra về mỗi bạn có số cá là 24 : 3 = 8 (con cá). Minh cho An và Phương số cá bằng số cá hiện có của mỗi người thì mỗi bạn có 8 con cá. Vậy trước khi Minh cho thì An và Phương mỗi bạn có 8 : 2 = 4 (con cá). Minh có 8 + 4 + 4 = 16 (con cá). Khi Phương cho An và Minh số các bằng số các hiện có của mỗi người thì An có 4 con cá, Minh có 16 con cá, Phương còn 4 con cá. Vậy trước khi Phương cho, An có 4 : 2 =2 (con cá). Minh có 16 : 2 = 8 (con cá). Phương có 4 + 2 + 8 = 14 (con cá). Khi An cho Minh và Phương số cá bằng số cá hiện có của mỗi người thì Phương có 14 con cá, Minh có 8 con cá, An có 2 con cá. Vậy trước khi An cho (lúc đầu) Phương có 14 : 2 = 7 (con cá). Minh có 8 : 2 = 4 (con cá), An có 2 + 7 + 4 = 13 (con cá).
Họ câu được -2 con cá .Người thứ nhất thấy không chia được cho 3 nên đã vứt xuống sông +1 con cá( nghĩa là câu được -1 con), số cá trở thành :
-2+(-1)=-3
Lấy đi 1/3 (tức là -1 con cá), để lại đúng -2 con cá trên bờ, rồi 2 người kia cũng làm như vậy nên kết quả là mỗi người mang về được -1 con cá
Câu 4
Đặt \(A=3+3^2+...+3^{20}\)
\(\Rightarrow A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{19}+3^{20}\right)\)
\(\Rightarrow A=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{19}\left(1+3\right)\)
\(\Rightarrow A=3.4+3^3.4+...+3^{19}.4\)
\(\Rightarrow A=\left(3+3^3+...+3^{19}\right).4⋮4\)
\(\Rightarrow A⋮4\left(đpcm\right)\)
\(A=3+3^2+...+3^{20}\)
\(\Rightarrow A=\left(3+3^2+3^3+3^4\right)+...+\left(3^{17}+3^{18}+3^{19}+3^{20}\right)\)
\(\Rightarrow A=3\left(1+3+3^2+3^3\right)+...+3^{17}\left(1+3+3^2+3^3\right)\)
\(\Rightarrow A=3.40+...+3^{17}.40\)
\(\Rightarrow A=\left(3+...+3^{17}\right).40⋮40\)
\(\Rightarrow A⋮40\left(đpcm\right)\)
Câu 3:
Giải:
a) \(5⋮x-5\)
\(\Rightarrow x-5\in\left\{1;5\right\}\)
+) \(x-5=1\Rightarrow x=6\)
+) \(x-5=5\Rightarrow x=10\)
Vậy \(x\in\left\{6;10\right\}\)
b) Ta có: \(x+3⋮x-3\)
\(\Rightarrow\left(x-3\right)+6⋮x-3\)
\(\Rightarrow6⋮x-3\)
\(\Rightarrow x-3\in\left\{1;2;3;6\right\}\)
\(\Rightarrow x\in\left\{4;5;6;9\right\}\)
Vậy \(x\in\left\{4;5;6;9\right\}\)
1) Gọi số học sinh của khối 6 là : k ( k thuộc N ; 200 <=k<=400)
Ta có : k-3 chia hết cho 12;15;18
=> k-3 thuộc BC(12;15;18)
BCNN(12;15;18)=180
=> k-3 thuộc B(180)=0;180;360;540;...
Vì 200<=k<=400 nên k-3=360
=> k=363
2) Gọi số rổ có thể chia nhiều nhất là k
Ta có : k thuộc UCLN(12;144;420)
UCLN(12;144;420)=12
=> k=12
Vậy có thể chia được nhiều nhất 12 rổ
3) Gọi số tổ có thể chia là : k
Ta có : k thuộc UCLN(42;56)
UCLN(42;56)=14
=> k=14
Vậy có thể chia được nhiều nhất 14 tổ
Khi đó mỗi tổ có : 42:14=3( nam )
56:14=4( nữ )
Câu 1:
Gọi a là số học sinh cần tìm
Ta có: \(a-3⋮12,a-3⋮15,a-3⋮18\), \(197\le a-3\le397\)
=> a-3 ϵ BC (12;15;18)
12= 22. 3
15= 3.5
18= 2. 32
BCNN (12;15;18)= 22.32.5= 180
BC ( 12;15;18)= B(180)= {0; 180; 360; 540;...}
=> a-3= 360
a= 360 +3= 363
Vậy có 363 học sinh
Câu 2:
Gọi a là số rổ cần tìm
Ta có: \(12⋮a,144⋮a,420⋮a\), a lớn nhất
=> a là ƯCLN (12;144;420)
12= 22.3
144= 24.32
420= 22.3.5.7
ƯCLN ( 12;144;420)= 22.3= 12
Vậy có thể chia được nhiều nhất là 12 rổ
Câu 3:
Gọi a là số tổ cần tìm
Ta có: \(42⋮a,56⋮a\), a lớn nhất
=> a là ƯCLN ( 42;56)
42= 2.3.7
56= 23.7
ƯCLN ( 42;56)= 2.7= 14
Vậy có thể chia được nhiều nhất 14 tổ
Số học sinh nam mỗi tổ có là:
42 : 14= 3 ( nam)
Số học sinh nữ mỗi tổ có là:
56 : 14= 4 (nữ)