Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a = 1 , b = - ( 2m + 1 ) , c = m - 3
\(\Delta=b^2-4ac\)
\(=\left[-\left(2m+1\right)\right]^2-4.1.\left(m-3\right)\)
\(=4m^2+4m+1-4m+12\)
\(=4m^2+13>0\forall m\)
Vậy: Pt (1) luôn có 2 nghiệm phân biệt với mọi m
Theo Vi-et ta có: \(P=x_1x_2=\frac{c}{a}=m-3\)
\(A=3x_1x_2-2x_1x_2\ge4\)
\(A=3P-2P\ge4\)
\(A=P=m-3\ge4\Leftrightarrow m\ge7\)
ta có \(\Delta=\left(2m-1\right)^2-4\left(m-2\right)\)
\(\Delta=4m^2-8m+9\)
\(\Delta=\left(2m-2\right)^2+5>0\)
do dó phương trình đã cho có 2 nghiệm phân biệt x1 ; x2
áp dụng định lí Vi-ét ta có: \(\hept{\begin{cases}s=x_1+x_2=2m-1\\p=x_1.x_2=m-2\end{cases}}\)
theo bài ra: x13 + x23 = 27
<=> (x1 + x2 )3 - 3x1x2 (x1+x2) - 27=0 <=> (2m-1)3 - 3(m-2) ( 2m-1) -27 =0
<=> 8m3 -12m2 +6m-1 - 6m2 +15m - 6 - 27 =0
<=> 8m3 - 18m2 + 21m - 34 =0 <=> (m-2)(8m2 -2m+17) = 0
\(\Rightarrow\hept{\begin{cases}m-2=0\\8m^2-2m+17=0\left(PTVN\right)\end{cases}}\) <=> m=2
Vậy m=2 thỏa mãn đề bài
( chú giải: PTVN là phương trình vô nghiệm)
đen ta = (2m-1)^2 - 4(m^2-1) = 4m^2 - 4m + 1 - 4m^2 + 4 = 5-4m >= 0 => m =< 5/4
p = (x1)^2 + (x2)^2 = (x1+x2)^2 - 2x1x2 = (2m-1)^2 - 2.(m^2-1) = 4m^2 - 4m + 1 - 2m^2 + 2 = 2m^2 - 4m + 2 + 1 = 2(m-1)^2 + 1 >= 1
dấu "=" xảy ra khi m = 1 (thõa mãn =< 5/4)
mậy minP = 1 khi m = 1
Chuyển vế :
\(x_1^2=2\left(m+1\right)x_1-m^2+1\)
thay vào Phuogw trình tìm m thôi
1. Với m=5
\(\Rightarrow x^2-\left(2.5+1\right).x+5^2-1=0\\ \Rightarrow x^2-11.x=-24\\ \)
\(\Rightarrow x^2-\frac{11}{2}.2.x+\left(\frac{11}{2}\right)^2=-24-\left(\frac{11}{2}\right)^2=\frac{-217}{4}\\ \Rightarrow\left(x+\frac{11}{2}\right)^2=-\frac{217}{4}\)
nên x thuộc rỗng
\(\dfrac{9}{2}+2^2-\dfrac{2}{5}-\sqrt{4}+\dfrac{\sqrt{2}}{3^2}+\dfrac{1}{2}-5^6+2^4\)