K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2016

1^2 = 1

2^2 =4

3^2 =9

4^2 = 16

...

a^2 = 2601    =>   \(a=\sqrt{2601}=51\)

=>   dãy số trên có thể viết dưới dạng:  1^2 ; 2^2 ; 3^2 ; 4^2 ;.....51^2 

Vậy dãy số trên có 51 chữ số.

16 tháng 10 2015

c . 25 + c . 75 = 2500

=> c . ( 25 + 75 ) = 2500

=> c . 100 = 2500

c = 2500 : 100

c = 25

=> c = 25

16 tháng 10 2015

c.100=2500

c=2500:100

c=25

tick mk nha

27 tháng 6 2018

\(C=\frac{3}{2^2}\cdot\frac{8}{3^2}\cdot\frac{15}{4^2}\cdot...\cdot\frac{2499}{50^2}=\frac{1\cdot3\cdot2\cdot4\cdot3\cdot5\cdot...\cdot49\cdot51}{2\cdot2\cdot3\cdot3\cdot4\cdot4\cdot...\cdot50\cdot50}=\frac{1\cdot51}{2\cdot50}=\frac{51}{100}\)

27 tháng 6 2018

\(C=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot...\cdot\frac{2499}{2500}\)

\(C=\frac{3}{2^2}+\frac{8}{3^2}+\frac{15}{4^2}+...+\frac{2499}{50^2}\)có 49 số hạng

Bài này là bài chứng minh mà bạn

27 tháng 8 2020

\(C=1+1+\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{9}\right)+\left(1-\frac{1}{16}\right)+...+\left(1-\frac{1}{2500}\right)\)

\(=\left(1+1+...+1\right)-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{2500}\right)\)

          51 số hạng                                    49 số hạng

\(51-\left(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{50.50}\right)\)

\(>51-\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{50.51}\right)=51-\left(\frac{1}{2}-\frac{1}{51}\right)=51-\frac{1}{2}+\frac{1}{51}\)

\(=50,5+\frac{1}{51}>50\left(đpcm\right)\)

Vậy C > 50