K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2018

đề là phân tích thành nhân tử thì làm thế này nha:

4x2-4xy-3y2-2x+3y

=4x2-4xy+y2-4y2-2x+3y

=(2x-y)2-(2y)2-(2x-3y)

=(2x-y-2y)(2x-y+2y)-(2x-3y)

=(2x-3y)(2x+y)-(2x-3y)

=(2x-3y)(2x+y-1)

Đúng thì tick nhaleuleu

30 tháng 10 2021

\(2x^3y-2xy^3-4xy^2-2xy\)

\(=2xy.\left(x^2-y^2-2y-1\right)\)

\(=2xy.[x^2-\left(y^2+2y+1\right)]\)

\(=2xy.[x^2-\left(y+1\right)^2]\)

\(=2xy.\left(x+y+1\right).\left(x-y-1\right)\)

Vậy chọn đáp án A

12 tháng 1 2022

chọn A

AH
Akai Haruma
Giáo viên
12 tháng 8 2020

lê thị mỹ vân:

a) Theo đề sửa:

$A=x^2+2y^2-2xy+4x-3y+1$

$=(x^2-2xy+y^2)+y^2+4x-3y+1$

$=(x-y)^2+4(x-y)+y^2+y+1$

$=(x-y)^2+4(x-y)+4+y^2+y+\frac{1}{4}-\frac{13}{4}$

$=(x-y+2)^2+(y+\frac{1}{2})^2-\frac{13}{4}$

$\geq \frac{-13}{4}$

Vậy GTNN của $A$ là $\frac{-13}{4}$. Giá trị này đạt được tại $x-y+2=y+\frac{1}{2}=0$

$\Leftrightarrow x=\frac{-5}{2}; y=\frac{-1}{2}$

AH
Akai Haruma
Giáo viên
12 tháng 8 2020

Lời giải:

a) Biểu thức không có min. Bạn xem lại đề.

b)

$B=2x^2+3y^2-4xy+4x+4y-2$

$=2(x^2-2xy+y^2)+y^2+4x+4y-2$

$=2(x-y)^2+4(x-y)+y^2+8y-2$

$=2[(x-y)^2+2(x-y)+1]+(y^2+8y+16)-20$
$=2(x-y+1)^2+(y+4)^2-20$

$\geq 0+0-20=-20$

Vậy $B_{\min}=-20$

Giá trị này đạt được khi $x-y+1=0$ và $y+4=0$

$\Leftrightarrow (x,y)=(-5,-4)$

Bạn thử xem lại đề câu d nhé.

undefinedundefined

Cảm ơn ạ.

 

 

a: \(=\dfrac{5\left(x^2+2xy+y^2\right)}{3\left(x^3+y^3\right)}\)

\(=\dfrac{5\left(x+y\right)^2}{3\left(x+y\right)\left(x^2-xy+y^2\right)}=\dfrac{5\left(x+y\right)}{3\left(x^2-xy+y^2\right)}\)

b: \(=\dfrac{x^2-4xy+4y^2-4}{2x\left(x-2y+2\right)}=\dfrac{\left(x-2y-2\right)\left(x-2y+2\right)}{2x\left(x-2y+2\right)}\)

\(=\dfrac{x-2y-2}{2x}\)

c: \(=\dfrac{2\left(x^2+5x+1\right)}{x\left(x-2\right)\left(x+2\right)}\)

 

2 tháng 7 2017

ai ,mình tích  lại

2 tháng 7 2017

2x^2+xy+2y^2 = 5/4.(x+y)^2 + 3/4. (x-y)^2 >= 5/4. (x+y)^2 
=> cbh(2x^2+xy+2y^2) >= cbh5 / 2. (x+y) 
tương tự với 2 căn còn lại.. cộng vế ta có VT >= cbh5 ( x+y+z) = cbh5 : dpcm 
dau = cay ra <=> x=y=z=1/3

20 tháng 10 2023

a) Xem lại đề

b) x³ - 4x²y + 4xy² - 9x

= x(x² - 4xy + 4y² - 9)

= x[(x² - 4xy + 4y² - 3²]

= x[(x - 2y)² - 3²]

= x(x - 2y - 3)(x - 2y + 3)

c) x³ - y³ + x - y

= (x³ - y³) + (x - y)

= (x - y)(x² + xy + y²) + (x - y)

= (x - y)(x² + xy + y² + 1)

d) 4x² - 4xy + 2x - y + y²

= (4x² - 4xy + y²) + (2x - y)

= (2x - y)² + (2x - y)

= (2x - y)(2x - y + 1)

e) 9x² - 3x + 2y - 4y²

= (9x² - 4y²) - (3x - 2y)

= (3x - 2y)(3x + 2y) - (3x - 2y)

= (3x - 2y)(3x + 2y - 1)

f) 3x² - 6xy + 3y² - 5x + 5y

= (3x² - 6xy + 3y²) - (5x - 5y)

= 3(x² - 2xy + y²) - 5(x - y)

= 3(x - y)² - 5(x - y)

= (x - y)[(3(x - y) - 5]

= (x - y)(3x - 3y - 5)

4 tháng 1 2020

c/\(x^2-2x=2y-xy\)

\(x^2-2x+xy-2y=0\)

\(x\left(x-2\right)+y\left(x-2\right)=0\)

\(\left(x+y\right)\left(x-2\right)=0\)

d/\(x^2+4xy-16+4y^2\)

\(=\left(x^2+4xy+4y^2\right)-16\)

\(=\left(x+2y\right)^2-4^2\)

\(=\left(x+2y-4\right)\left(x+2y+4\right)\)

4 tháng 1 2020

b/\(2x^2+7x-15\)

\(=2x^2+10x-3x-15\)

\(=\left(2x^2+10x\right)-\left(3x+15\right)\)

\(=2x\left(x+5\right)-3\left(x+5\right)\)

\(=\left(2x-3\right)\left(x+5\right)\)