\(2021,2345\cdot2020,1234+2021,2345\cdot\left(-2020,1234\right)\)

d,

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2023

c) \(2021,2345.2020,1234+2021,2345.\left(-2020,1234\right)\)

\(\text{=}2021,2345.\left(2020,1234-2020,1234\right)\)

\(\text{=}2021,2345.0\)

\(\text{=}0\)

d)\(4,75+\left(\dfrac{-1}{2}\right)^3+0,5^2-3.\dfrac{-3}{8}\)

\(\text{=}4,75-\dfrac{1}{8}+\dfrac{1}{4}+\dfrac{9}{8}\)

\(\text{=}\left(4,75+0,25\right)+\left(\dfrac{9}{8}-\dfrac{1}{8}\right)\)

\(\text{=}1+1\)

\(\text{=}2\)

20 tháng 9 2023

Mình nhầm ở chỗ phần d nha.

Kết quả cuối cùng phải là :

\(\left(4,75+0,25\right)+\left(\dfrac{9}{8}-\dfrac{1}{8}\right)\)

\(\text{=}5+1\)

\(\text{=}6\)

Bài 2:

a: =>x^2=60

=>\(x=\pm2\sqrt{15}\)

b: =>2^2x+3=2^3x

=>3x=2x+3

=>x=3

c: \(\Leftrightarrow\sqrt{\dfrac{1}{2}x-2}\cdot\dfrac{1}{2}=1\)

\(\Leftrightarrow\sqrt{\dfrac{1}{2}x-2}=2\)

=>1/2x-2=4

=>1/2x=6

=>x=12

13 tháng 1 2018

a,

\(\left(\dfrac{3}{5}x-\dfrac{2}{3}x-x\right)\cdot\dfrac{1}{7}=-\dfrac{5}{21}\)

\(\Rightarrow\dfrac{-16}{15}x\cdot\dfrac{1}{7}=-\dfrac{5}{21}\)

\(\Rightarrow\dfrac{-16}{15}x=\dfrac{-\dfrac{5}{21}}{\dfrac{1}{7}}=-\dfrac{5}{3}\)

\(\Rightarrow x=\dfrac{-\dfrac{5}{3}}{-\dfrac{16}{15}}=\dfrac{25}{16}\)

b,

\(\left(5x-1\right)\left(2x+\dfrac{1}{3}\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}5x-1=0\\2x+\dfrac{1}{3}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=-\dfrac{1}{6}\end{matrix}\right.\)

c,

\(\dfrac{5\left|x+1\right|}{2}=\dfrac{90}{\left|x+1\right|}\)

\(\Rightarrow5\left|x+1\right|^2=180\)

\(\Rightarrow\left|x+1\right|^2=36\)

\(\left|x+1\right|\ge0\)

=> x + 1 = 6 <=> x = 7

2 tháng 7 2018

1,

\(A=\left(\dfrac{1}{2}-1\right)\cdot\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{2018}-1\right)\\ A=\left(-\dfrac{1}{2}\right)\cdot\left(-\dfrac{2}{3}\right)\cdot...\cdot\left(-\dfrac{2017}{2018}\right)\\ =-\left(\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot...\cdot\dfrac{2017}{2018}\right)\\ =-\dfrac{1}{2018}\)

20 tháng 6 2018

a)x=1;2;-2(bạn nên tự giải)

b)=>\(\dfrac{1\cdot2\cdot3\cdot4\cdot...\cdot30\cdot31}{4\cdot6\cdot8\cdot10\cdot...\cdot62\cdot64}\)=2x

=>\(\dfrac{2\cdot3\cdot4\cdot5\cdot...\cdot30\cdot31}{60\left(2\cdot3\cdot4\cdot5\cdot...\cdot30\cdot31\right)\cdot64}=2x\)

=>\(\dfrac{1}{60\cdot64}=2x\)=> 1/3840 =2x

=>x = 1/7680

c)=>4x - 2x = 6x - 3x

=>2x (2x-1)= 3x(2x-1)

=> 2x = 3x

=>x = 0

21 tháng 6 2018

ak mình nhầm

10 tháng 12 2018

Làm mau hộ mik

\(C=25\cdot\dfrac{-1}{27}+\dfrac{1}{5}-2\cdot\dfrac{1}{4}-\dfrac{1}{2}\)

\(=-\dfrac{25}{27}+\dfrac{1}{5}-1=-\dfrac{233}{135}\)

\(D=\dfrac{9}{4}-\dfrac{5}{6}-\dfrac{1}{4}=2-\dfrac{5}{6}=\dfrac{7}{6}\)

7 tháng 12 2017

Làm lại cho you đây -_- vừa nãy bấm mt nhầm,đời t nhọ vãi

1)\(P=1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+\dfrac{1}{4}\left(1+2+3+4\right)+...+\dfrac{1}{16}\left(1+2+3+....+16\right)\)

\(P=1+\dfrac{1+2}{2}+\dfrac{1+2+3}{3}+\dfrac{1+2+3+4}{4}+...+\dfrac{1+2+3+...+16}{16}\)

Xét thừa số tổng quát: \(\dfrac{1+2+3+...+t}{t}=\dfrac{\left[\left(t-1\right):1+1\right]:2.\left(t+1\right)}{t}=\dfrac{\dfrac{t}{2}\left(t+1\right)}{t}=\dfrac{\dfrac{t^2}{2}+\dfrac{t}{2}}{t}=\dfrac{t\left(\dfrac{t}{2}+\dfrac{1}{2}\right)}{t}=\dfrac{t}{2}+\dfrac{1}{2}\)

Như vậy: \(P=1+\left(\dfrac{2}{2}+\dfrac{1}{2}\right)+\left(\dfrac{3}{2}+\dfrac{1}{2}\right)+\left(\dfrac{4}{2}+\dfrac{1}{2}\right)+...+\left(\dfrac{16}{2}+\dfrac{1}{2}\right)\)

\(P=1+\dfrac{3}{2}+\dfrac{4}{2}+\dfrac{5}{2}+....+\dfrac{17}{2}\)

\(P=\dfrac{2+3+4+5+...+17}{2}\)

\(P=\dfrac{152}{2}=76\)

2) \(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}=\dfrac{1}{3}\)

\(\Rightarrow2016\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)=\dfrac{2016}{3}\)

\(\Rightarrow\dfrac{2016}{a+b}+\dfrac{2016}{b+c}+\dfrac{2016}{c+a}=\dfrac{2016}{3}\)

\(\Rightarrow\dfrac{a+b+c}{a+b}+\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}=\dfrac{2016}{3}\)

\(\Rightarrow\dfrac{a+b}{a+b}+\dfrac{c}{a+b}+\dfrac{b+c}{b+c}+\dfrac{a}{b+c}+\dfrac{c+a}{c+a}+\dfrac{b}{c+a}=\dfrac{2016}{3}\)

\(\Rightarrow1+\dfrac{c}{a+b}+1+\dfrac{a}{b+c}+1+\dfrac{b}{c+a}=\dfrac{2016}{3}\)

\(\Rightarrow\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=\dfrac{2016}{3}-1-1-1=\dfrac{2007}{3}\)

a: \(=\dfrac{2^{19}\cdot3^9+3^9\cdot5\cdot2^{18}}{2^{19}\cdot3^9+2^{10}}\)

\(=\dfrac{3^9\cdot2^{18}\cdot\left(2+5\right)}{2^{10}\cdot\left(2^9\cdot3^9+1\right)}=\dfrac{3^9\cdot7\cdot2^8}{6^9+1}\)

b: \(=\dfrac{\dfrac{-1}{8}-\dfrac{27}{64}\cdot4}{-2+\dfrac{9}{16}-\dfrac{3}{8}}=\dfrac{-29}{16}:\dfrac{-29}{16}=1\)

17 tháng 6 2018

\(25\cdot\left(\dfrac{-1}{5}\right)^3+\dfrac{1}{5}-2\cdot\left(\dfrac{-1}{2}\right)^2-\dfrac{1}{2}\)

\(=25\cdot\left(\dfrac{-1}{125}\right)+\dfrac{1}{5}-2\cdot\left(\dfrac{-1}{4}\right)-\dfrac{1}{2}\)

\(=\left(\dfrac{-1}{5}\right)+\dfrac{1}{5}-\left(\dfrac{-1}{2}\right)-\dfrac{1}{2}\)

\(=0\)