K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2020

Bài 2:

A B C D H 1

a) Xét tam giác BDC vuông tại C có:

\(DC^2+BC^2=DB^2\)

\(\Rightarrow BD=\sqrt{DC^2+BC^2}\)( DC=AB)

\(\Rightarrow BD=10\left(cm\right)\)

b) tam giác BDA nhé

Xét tamg giác ADH và tam giác BDA có:

\(\hept{\begin{cases}\widehat{D1}chung\\\widehat{AHD}=\widehat{BAD}=90^0\end{cases}\Rightarrow\Delta ADH~\Delta BDA\left(g.g\right)}\)

c) Vì tam giác ADH đồng dạng với tam giác BDA (cmt)

\(\Rightarrow\frac{AD}{DH}=\frac{BD}{DA}\)( các cạnh t,.ứng tỉ lệ )

\(\Rightarrow AD^2=BD.DH\)

d) Xét tan giác AHB và tam giác BCD có:

\(\hept{\begin{cases}\widehat{AHB}=\widehat{BCD}=90^0\\\widehat{ABH}=\widehat{DBC}=45^0\end{cases}\Rightarrow\Delta AHB~\Delta BCD\left(g.g\right)}\)

( góc= 45 độ bạn tự cm nhé )

e) \(S_{ABD}=\frac{1}{2}AD.AB=\frac{1}{2}AH.BD\)

\(\Rightarrow AD.AB=AH.BD\)

\(\Rightarrow AH=4,8\left(cm\right)\)

Dùng Py-ta-go làm nốt tính DH
 

12 tháng 3 2020

Bài 1

A B C H I D

a) Áp dụng định lý Pytago vào tam giác ABC vuông tại A ta có:

\(AB^2+AC^2=BC^2\)

Thay AB=3cm, AC=4cm

\(\Rightarrow3^2+4^2=BC^2\)

<=> 9+16=BC2

<=> 25=BC2

<=> BC=5cm (BC>0)

29 tháng 4 2016

Áp dụng công thức mà làm nhé!

11 tháng 4 2018

A B C D H 8 6

a) Xét \(\Delta ABD\perp A\) có :

\(DB^2=AD^2+AB^2\) (Định lí Pitago)

\(\Rightarrow DB=\sqrt{AD^2+AB^2}=\sqrt{BC^2+AB^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)

b) Xét \(\Delta ADH,\Delta ADB\) có :

\(\left\{{}\begin{matrix}\widehat{D}:Chung\\\widehat{AHD}=\widehat{BAD}=90^o\end{matrix}\right.\)

\(\Rightarrow\Delta ADH\sim\Delta ADB\left(g.g\right)\) (1)

c) Từ \(\Delta ADH\sim\Delta ADB\left(g.g\right)\) ta có :

\(\dfrac{DH}{AD}=\dfrac{AD}{DB}\)

\(\Rightarrow AD^2=DH.DB\)

d) Xét \(\Delta ABD,\Delta CDB\) có :

\(AD=BC\) (Tứ giác ABCD là hình chữ nhật)

\(AB=DC\) (Tứ giác ABCD là hình chữ nhật)

\(\widehat{BAD}=\widehat{DCB}\left(=90^o\right)\) (Tứ giác ABCD là hình chữ nhật)

=> \(\Delta ABD=\Delta CDB\left(c.g.c\right)\) (2)

Từ (1) và (2) => \(\Delta AHB\sim\Delta BCD\)

e) Ta có : \(S_{\Delta ABD}=\) \(\left\{{}\begin{matrix}\dfrac{1}{2}AD.AB\\\dfrac{1}{2}AH.BD\end{matrix}\right.\Rightarrow AD.AB=AH.BD\)

\(\Rightarrow6.8=AH.10\)

\(\Rightarrow AH=\dfrac{6.8}{10}=4,8\left(cm\right)\)

Xét \(\Delta AHD\perp H\) có :

\(AD^2=AH^2+DH^2\) (Định lí Pitago)

\(\Rightarrow6^2=4,8^2+DH^2\)

\(\Rightarrow DH=\sqrt{6^2-4,8^2}=3,6\left(cm\right)\)

12 tháng 5 2017

A B C D 8 cm 6 cm 1 1

Áp dụng định lý PI ta go vào tam giác ADB có :

\(DB=\sqrt{AB^2+AD^2}=\sqrt{8^2+6^2}=10\left(cm\right)\)

b.\(\text{Xét 2 tam giác ADH và tam giác ADB có:}\)

\(\widehat{A}=\widehat{H}=90^0\)

\(\widehat{D}\)\(\text{chung}\)

\(\Rightarrow\Delta ADH~\Delta ADB\left(gg\right)\)

b.\(\Rightarrow\frac{AD}{AD}=\frac{DH}{DB}\)

Hay \(\frac{AD}{DH}=\frac{DB}{AD}\)

\(\Rightarrow AD^2=DH.DB\)

c. \(\text{Xét 2 tam giác ABD và tam giác CDB có:}\)

\(\widehat{A}=\widehat{C}=90^0\)

\(\widehat{B_1}=\widehat{D_1}\left(slt\right)\)

\(\Rightarrow\Delta ABD~\Delta CDB\left(gg\right)\)

mà  \(\Delta ADB~\Delta ADH\left(a\right)\)

\(\Rightarrow\Delta AHD~\Delta BCD\)

d. \(\Rightarrow\frac{AH}{BC}=\frac{HD}{CD}=\frac{AD}{BD}\)

\(\Rightarrow\frac{AH}{6}=\frac{DH}{8}=\frac{6}{10}\)

\(\Rightarrow AH=\frac{6.6}{10}=3,6\left(cm\right)\)

\(DH=\frac{6.8}{10}=4,8\left(cm\right)\)

4 tháng 5 2017

Vào câu hỏi tương tự kiếm thử đii

4 tháng 5 2017

ko giống khác tý bạn ơi

28 tháng 4 2018
a) xét tam giác ABC và tam giác HBA có: BAC=BHA (90°) B chung => tam giác ABC~ tam giác HBA (g.g) b) Áp dụng định lý py ta go trong tam giác ABC vuông tại A BC 2 = AC 2 + AB 2 BC 2 = (4,5)2 + (6)2 BC 2 = 20.25 + 36 BC 2 = 56.25 BC = căn 56.25 = 7.5 (cm) c) Áp dụng định lý đảo ta lét ta có AE/ AB = AF / AC (E € AB, F € AC) => EF// BC
18 tháng 4 2018

hình bn tự vẽ nhé

a, xét tam giác AHB và tam giác ABC có:

                       góc AHB = góc ABC = 90 độ

                       góc ABH = góc BAC (ABCD là hình vuông)

nên tg AHB đồng dag vs tg ABC (g.g)

b, xét tg AHD và tg BAD có:

                      góc AHD = góc BAD = 90 độ

                      ADB là góc chung

nên tg AHD đồng dạng vs tg BAD. Do đó: AD/DB = DH/AD    => AD^2 = DH.DB (dpcm)

c, tg ABD vuông tại A có: BD^2 = AB^2 + AD^2    => DB^2 = 4^2 + 3^2 = 25          => DB = 5 (cm)

Theo câu b ta có: AD^2 = DH,DB  => DH = AD^2/DB   =>DH = 3^2/5 = 1,8 (cm)

tg AHD vuông tại H có: AD^2 = AH^2 + DH^2

=> 3^2 = AH^2 + 1,8^2 => AH^2 = 5,76    => AH = căn 2 của 5,76