Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2-4 + 6-8+......+ 48-50
= -2 + -2 + -2 +......+-2 ( 25 số hạng )
= - ( 2+2+2+....+2) ( 25 số hạng)
= -2 . 25
= - 50
b, -1+3-5+7-...-97+99
= ( -1+3)+( -5+7)+...+( -97+99)
= 2+2+...+2
= 2.25 ( từ 1 đến 99 có số hạng, chia thành 25 cặp)
= 50
c, 1+2-3-4+...+97+98-99-100
= ( 1+2-3-4)+...+( 97+98-99-100)
= -4-...-4
= -4.25 ( từ 1 đến 100 có 100 số, chia 25 cặp)
= -100
a,2-4 + 6-8+......+ 48-50
= -2 + -2 + -2 +......+-2 ( 25 số hạng )
= - ( 2+2+2+....+2) ( 25 số hạng)
= -2 . 25
= - 50
b
-1+2-5+7-..+97-99
=(-1-99)+(-3-97)+...+(-49-51)
=(-100)+(-100)+...+(-100)
Có 50 cặp -100
Nên Tổng bằng : -100.50=-5000
Vậy....=-5000
c,
Đặt A = 1 + 2 - 3 - 4 + ... + 97 + 98 - 99 - 100
Biểu thức A có : (100 - 1) : 1 + 1 = 100 (số hạng)
Nhóm 4 số hạng thành một nhóm ta được : 100 : 4 = 25 (nhóm)
=> A = (1 + 2 - 3 - 4) + ... + (97 + 98 - 99 - 100)
=> A = (-4) + ... + (-4)
=> A = (-4) . 25
=> A = -100
Vậy A = -100
CHÚC BẠN HỌC TỐT
\(B=1.2+2.3+3.4+...+49.50\)
\(\Rightarrow3B=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+49.50.\left(51-48\right)\)
\(\Rightarrow3B=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+49.50.51-48.49.50\)
\(\Rightarrow3B=49.50.51\)
\(\Rightarrow B=\frac{49.50.51}{3}\)
B=\(1.2+2.3+....+49.50\\ \Rightarrow3B=1.2.\left(3-0\right)+2.3.\left(4-1\right)+.....+49.50.\left(51-48\right)\)
\(\Rightarrow3B=1.2.3-0.1.2+2.3.4-1.2.3.+.....+49.50.51-48.49.50\\ \Rightarrow3B=49.50.51\\ \Rightarrow3B=124950\\ \Rightarrow B=41650\)
C=\(1^2+2^2+3^2+....+50^2\\ =1.1+2.2+3.3+.....+50.50\\ =1\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+....+50\left(51-1\right)\\ \)
\(=\left(1.2+2.3+3.4+.....+50.51\right)-\left(1+2+3+....+50\right)\)
Áp dụng bài trên để tính
câu nào dạng cũng giống nhau, ko biết 1 câu là ko giải đc toàn bộ
\(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
=\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
=\(\frac{1}{2}-\frac{1}{50}\)
=\(\frac{12}{25}\)
Dấu chấm là dấu nhân,bạn bít rồi đúng ko
\(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{49\cdot50}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=\frac{1}{2}-\frac{1}{50}=\frac{25}{50}-\frac{1}{50}=\frac{24}{50}=\frac{12}{25}\)
Công thức : \(\frac{a}{b\left(b+a\right)}=\frac{1}{b}-\frac{1}{b+a}\)
\(\frac{2a}{b\left(b+a\right)\left(b+2a\right)}=\frac{1}{b\left(b+a\right)}-\frac{1}{\left(b+a\right)\left(b+2a\right)}\)
\(\frac{3a}{b\left(b+a\right)\left(b+2a\right)\left(b+3a\right)}=\frac{1}{b\left(b+a\right)\left(b+2a\right)}-\frac{1}{\left(b+a\right)\left(b+2a\right)\left(b+3a\right)}\)
\(C=2+4+6+8+...+50\)
Số các số hạng của \(C\) là:
\(\left(50-2\right):2+1=25\left(số\right)\)
Tổng \(C\) bằng:
\(\left(50+2\right)\cdot25:2=650\)
\(---\)
\(D=1+2+3+4+...+200\)
Số các số hạng của \(D\) là:
\(\left(200-1\right):1+1=200\left(số\right)\)
Tổng \(D\) bằng:
\(\left(200+1\right)\cdot200:2=20100\)
\(---\)
\(E=1+4+7+10+...+100\)
Số các số hạng của \(E\) là:
\(\left(100-1\right):3+1=34\left(số\right)\)
Tổng \(E\) bằng:
\(\left(100+1\right)\cdot34:2=1717\)
\(Toru\)
Khoảng cách giữa 2 số hạng liên tiếp ở tổng A là: 2
Số số hạng của tổng C là:
(50 - 2) : 2 + 1 = 25 (số hạng)
Tổng C có giá trị là:
(2 + 50) x 25 : 2 = 650
-----------------------------------------
Số số hạng của tổng D là: 200
Tổng D có giá trị là:
(1 + 200) x 200 : 2 = 20100
----------------------------------------
Khoảng cách giữa 2 số hạng liên tiếp của tổng E là: 3
Số số hạng của tổng E là:
(100 - 1) : 3 + 1 = 34 (số hạng)
Tổng E có giá trị là:
(1 + 100) x 34 : 2 = 1717
Đáp số: C = 650
D = 20100
E = 1717
31.(-18)+31.(-81)-31
=31.(-18)+31.(-81)-31.1
=31.[(-18)+(-81)-1]
=31.(-100)
=-3100
Tk mk nhé!Thank you!Chắc chắn 100%!
31*(-18)+31*(-81)-31=
=31*[(-18)+(-81)]-31
=31*(-99)-31
=31*(-130)
=-4030
k cho minh nhe
2C=2-2^2+2^3-2^4+...+2^51(*)
2C+C=(*)+C=2^51+1
\(C=\frac{2^{51}+1}{3}\)
Đ/S= -1
hk tốt !! sai thì thôi k nha!!@@