
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a/ x^3-6x^2+12x-8
=(x-2)^3
b/x^2+5x+4
=x^2+x+4x+4
=x(x+1)+4(x+1)
=(x+1)(x+4)
c/ 16^2-9(x+1)^2=0
<=> (4x-3x-3)(4x+3x+3)=0
<=>x-3=0 hay 7x+3=0
<=> x=3 hay x=-3/7
d/ x^3-2x^2-x+2
=x^2(x-2)-(x-2)
=(x-2)(x^2-1)
=(x-2)(x-1)(x+1)
e/x^2+y^2-2xy-x+y
=(x-y)^2-(x-y)
f/x^3+y^3+3y^2+3y+1
=x^3+(y+1)^3
=(x+y+1)[x^2-xy-x+(y+1)^2]
=(x+y+1)(x^2-xy-x+y^2+2y+1)
b. x2+2.5/2x+(5/2)2-(5/2)2+4
= (x+5/2)2-25/4+4
=(x+5/2)2-(3/2)2
= x+ 5/2 -3/2 ) . (x+5/2-3/2)
= (x+1 ) (x+2)
c.
(4x)2- [3(x+1)]2 =0
[4x-3(x+1)] [4x+3(x+1)] =0
(x-3) (7x+3) =0
<=> x-3 =0 => x = 3
7x+3=0 => x= -3/7
d. x3-2x2-x+2
= (x3-2x2) - (x+2)
= x2 (x-2) - (x-2)
= (x-2) (x2-1)
CHÚC BẠN HỌC TỐT
* Tớ còn a, e, và f sorry nó k dễ để suy nghĩ trong thơi gian ngắn được nên tớ bỏ !! Ahihihih

Lời giải:
a)
\(x^2-2x=24\)
\(\Leftrightarrow x^2-6x+4x-24=0\)
\(\Leftrightarrow x(x-6)+4(x-6)=0\Leftrightarrow (x+4)(x-6)=0\)
\(\Rightarrow \left[\begin{matrix} x+4=0\\ x-6=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=-4\\ x=6\end{matrix}\right.\)
b)
\(x^3-7x+6=0\Leftrightarrow (x^3-x)-(6x-6)=0\)
\(\Leftrightarrow x(x^2-1)-6(x-1)=0\)
\(\Leftrightarrow x(x-1)(x+1)-6(x-1)=0\)
\(\Leftrightarrow (x-1)(x^2+x-6)=0\)
\(\Leftrightarrow (x-1)(x^2-2x+3x-6)=0\)
\(\Leftrightarrow (x-1)[x(x-2)+3(x-2)]=0\)
\(\Leftrightarrow (x-1)(x-2)(x+3)=0\)
\(\Rightarrow \left[\begin{matrix} x-1=0\\ x-2=0\\ x+3=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=1\\ x=2\\ x=-3\end{matrix}\right.\)
c) Xem lại đề.
d) Đặt \(x^2+x+4=a\) thì pt trở thành:
\(a^2+8ax+16x^2=0\)
\(\Leftrightarrow a^2+2.a.4x+(4x)^2=0\)
\(\Leftrightarrow (a+4x)^2=0\Rightarrow a+4x=0\)
\(\Rightarrow x^2+x+4+4x=0\)
\(\Rightarrow x(x+1)+4(x+1)=0\Leftrightarrow (x+1)(x+4)=0\)
\(\Rightarrow \left[\begin{matrix} x+4=0\rightarrow x=-4\\ x+1=0\rightarrow x=-1\end{matrix}\right.\)

a) Ta có :\(x^3-3.x^2.2+3.x+2^2+2^3\)(Hằng đẳng thức số 5 đấy bạn)
=\(\left(x-2\right)^3\)
b) Ta có:\(x^2+5x+4=x^2+4x+1x+4\)
\(=\left(x^2+4x+4\right)+x\)
\(=\left(x+2\right)^2+x\)
c) Ta có :\(16x^2-9\left(x+1\right)^2=0\)
\(\left[4x+3\left(x+1\right)\right].\left[4x-3\left(x+1\right)\right]=0\)(Hằng đẩng thức số 3)
\(\left(4x+3x+3\right).\left(4x-3x-3\right)=0\)
\(7x+3.\left(x-3\right)=0\)
\(\Rightarrow7x+3=0\)hoặc \(x-3=0\)
\(\Rightarrow7x=-3\) hoặc \(x=0+3\)
\(\Rightarrow x=\frac{-3}{7}\) hoặc \(x=3\)
Vậy:\(x=\frac{-3}{7};3\)
d) Ta có \(x^3-2x^2-x+2\)
\(=\left(x^3-x\right)-\left(2x^2-2\right)\)
\(=x\left(x^2-1\right)-2\left(x^2-1\right)\)
\(=\left(x-2\right).\left(x^2-1\right)\)
Bây giờ hơi trễ rồi để mai mình làm tiếp 2 câu cuối nhá.
Rất vui khi được giúp bạn !!1 : =))

a: \(\Leftrightarrow\left(x+12-3x\right)\left(x+12+3x\right)=0\)
=>(-2x+12)(4x+12)=0
=>x=-3 hoặc x=6
b: \(\Leftrightarrow20x^3-15x^2+45x-45=0\)
=>\(x\simeq0.93\)
d: =>-4x+28+11x=-x+3x+15
=>7x+28=2x+15
=>5x=-13
=>x=-13/5
e: \(\Leftrightarrow4x^3-12x+x=4x^3-3x+5\)
=>-9x=-3x+5
=>-6x=5
=>x=-5/6

Mấy bài kia phá tung tóe rồi rút gọn hết sức xong thay x vào, làm câu c thôi nhé:
c) \(C=x^{14}-10x^{13}+10x^{12}-10x^{11}+...+10x^2-10x+10\)
riêng câu này ta thay x = 9 vào luôn, vậy ta có:
\(C=9^{14}-10\cdot9^{13}+10\cdot9^{12}-10\cdot9^{11}+...+10\cdot9^2-10\cdot9+10\)
\(=9^{14}-\left(9+1\right)\cdot9^{13}+\left(9+1\right)\cdot9^{12}-\left(9+1\right)\cdot9^{11}+...+\left(9+1\right)\cdot9^2-\left(9+1\right)\cdot9+10\)
\(=9^{14}-9^{14}-9^{13}+9^{13}+9^{12}-9^{12}-9^{11}+...+9^3+9^2-9^2-9+10\)
\(=-9+10\)
\(=1\)

a) Ta có: \(x^2-9x+20=0\)
\(\Leftrightarrow x^2-5x-4x+20=0\)
\(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=4\end{matrix}\right.\)
Vậy: x∈{4;5}
b) Ta có: \(x^3-4x^2+5x=0\)
\(\Leftrightarrow x\left(x^2-4x+5\right)=0\)(1)
Ta có: \(x^2-4x+5\)
\(=x^2-4x+4+1=\left(x-2\right)^2+1\)
Ta có: \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-2\right)^2+1\ge1>0\forall x\)
hay \(x^2-4x+5>0\forall x\)(2)
Từ (1) và (2) suy ra x=0
Vậy: x=0
c) Sửa đề: \(x^2-2x-15=0\)
Ta có: \(x^2-2x-15=0\)
\(\Leftrightarrow x^2+3x-5x-15=0\)
\(\Leftrightarrow x\left(x+3\right)-5\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=5\end{matrix}\right.\)
Vậy: x∈{-3;5}
d) Ta có: \(\left(x^2-1\right)^2=4x+1\)
\(\Leftrightarrow x^4-2x^2+1-4x-1=0\)
\(\Leftrightarrow x^4-2x^2-4x=0\)
\(\Leftrightarrow x\left(x^3-2x-4\right)=0\)
\(\Leftrightarrow x\left(x^3+2x^2+2x-2x^2-4x-4\right)=0\)
\(\Leftrightarrow x\cdot\left[x\left(x^2+2x+2\right)-2\left(x^2+2x+2\right)\right]=0\)
\(\Leftrightarrow x\cdot\left(x^2+2x+2\right)\cdot\left(x-2\right)=0\)(3)
Ta có: \(x^2+2x+2\)
\(=x^2+2x+1+1=\left(x+1\right)^2+1\)
Ta có: \(\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+1\right)^2+1\ge1>0\forall x\)
hay \(x^2+2x+2>0\forall x\)(4)
Từ (3) và (4) suy ra
\(\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy: x∈{0;2}

\(a.x\left(x^2-1\right)=0\\ \Leftrightarrow x\left(x-1\right)\left(x+1\right)=0\\\Leftrightarrow \left[{}\begin{matrix}x=0\\x-1=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
\(b.\left(x-\frac{1}{2}\right)\left(2x+5\right)=0\\\Leftrightarrow \left[{}\begin{matrix}x-\frac{1}{2}=0\\2x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=-\frac{5}{2}\end{matrix}\right. \)
Câu \(b\) thấy hơi kì nên chắc đề như này.
\(c.x-2\left(\frac{2}{3}x-6\right)=0\\\Leftrightarrow x-\frac{4}{3}x+12=0\\\Leftrightarrow -\frac{1}{3}x+12=0\\\Leftrightarrow -\frac{1}{3}x=-12\\\Leftrightarrow x=36\)
\(d.x^2-2x=0\\\Leftrightarrow x\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
\(e.\left(x^2-2x+1\right)-4=0\\ \Leftrightarrow\left(x-1\right)^2-4=0\\\Leftrightarrow \left(x-1-2\right)\left(x-1+2\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x+1\right)=0\\\Leftrightarrow \left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
\(f.x\left(2x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\2x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\frac{1}{2}\end{matrix}\right.\)
\(g.4x^2+4x+1=0\\ \Leftrightarrow4\left(x^2+x+\frac{1}{4}\right)=0\\\Leftrightarrow x^2+x+\frac{1}{4}=0\\\Leftrightarrow \left(x+\frac{1}{2}\right)^2=0\\\Leftrightarrow x+\frac{1}{2}=0\\ \Leftrightarrow x=-\frac{1}{2}\)
\(h.x^2-5x+6=0\\ \Leftrightarrow x^2-2x-3x+6=0\\\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x-2\right)=0\\\Leftrightarrow \left[{}\begin{matrix}x-3=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)
\(i.2x^2+3x=0\\ \Leftrightarrow x\left(2x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\2x+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-\frac{3}{2}\end{matrix}\right.\)
\(\begin{array}{l} a)x\left( {{x^2} - 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} x = 0\\ {x^2} - 1 = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = 1\\ x = - 1 \end{array} \right.\\ b)\left( {x - \dfrac{1}{2}} \right)\left( {2x + 5} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} x - \dfrac{1}{2} = 0\\ 2x + 5 = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = \dfrac{1}{2}\\ x = - \dfrac{5}{2} \end{array} \right.\\ c)\left( {x - 2} \right)\left( {\dfrac{2}{3}x - 6} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} x - 2 = 0\\ \dfrac{2}{3}x - 6 = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = 2\\ x = 9 \end{array} \right. \end{array}\)
\(c,x^4-16x^2=0\)
=> \(x^2\left(x^2-4^2\right)=0\)
=> \(x^2\left(x-4\right)\left(x+4\right)=0\)
=> \(\orbr{\begin{cases}x=0\\x=\pm4\end{cases}}\)
\(d,x^2+x=6\)
=> \(x^2+x-6=0\)
=> \(x^2+3x-2x-6=0\)
=> \(\left(x+3\right)\left(x-2\right)=0\)
=> \(\orbr{\begin{cases}x+3=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=2\end{cases}}}\)
\(e,x^2-7x=-12\)
=> \(x^2-7x+12=0\)
=> \(x^2-3x-4x+12=0\)
=> \(\left(x-3\right)\left(x-4\right)=0\)
=> \(\orbr{\begin{cases}x-3=0\\x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=4\end{cases}}}\)
\(f,x^3-x^2=-x\)
=> \(x^3-x^2+x=0\)
=> \(x\left(x^2-x+1\right)=0\)
=> \(x=0\) vì \(\left(x^2-x+1\right)>0\)