K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2020

C = ( x2 - 5x + 1 )2 + ( 5x - 1 )2 + 2( x2 - 5x + 1 )( 5x - 1 )

= [ ( x2 - 5x + 1 ) + ( 5x - 1 ) ]2 ( HĐT số 1 )

= ( x2 - 5x + 1 + 5x - 1 )2

= ( x2 )2 = x4

21 tháng 6 2017

1) \(B=5\left(2x-1\right)^2+4\left(x-1\right)\left(x+3\right)+2\left(5-3x\right)^2\)

\(=5\left(4x^2-4x+1\right)+\left(4x-4\right)\cdot\left(x+3\right)+2\left(25-30x+9x^2\right)\)

\(=20x^2-20x+5+4x^2+12x-4x-12+50-60+18x^2\)

\(=42x^2-72x+43\)

2) \(C=\left(2a^2+2a+1\right)\left(2a^2-2a+1\right)-\left(2a+1\right)^2\)

\(=4a^4-4a^3+2a^2+4a^3-4a^2+2a+2a^2-2a+1-\left(4a^2+4a+1\right)\)

\(=4a^4+2a^2-4a^2+2a^2+1-4a^2-4a-1\)

\(=4a^4-4a^2-4a\)

3) Sky Sơn Tùng làm đúng rồi nhé.

4) \(E=\left(x^2-5x+1\right)^2+2\left(5x-1\right)\left(x^2-5x+1\right)\left(5x-1\right)^2\)

\(=x^4+27x^2+1-10x^3+250x^5-1400x^4+1030x^3-302x^2+40x-2\)

\(=-1399x^4-275x^2-1+1020x^3+250x^5+40x\)

5) \(F=\left(a^2+b^2-c^2\right)^2-\left(a^2-b^2+c^2\right)^2\)

\(=\left[a^2+b^2-c^2-\left(a^2-b^2+c^2\right)\right]\cdot\left(a^2+b^2-c^2+a^2-b^2+c^2\right)\)

\(=\left(a^2+b^2-c^2-a^2+b^2-c^2\right)\cdot2a^2\)

\(=\left(2b^2-2c^2\right)\cdot2a^2\)

\(=2\left(b^2-c^2\right)\cdot2a^2\)

\(=2\left(b-c\right)\left(b+c\right)\cdot2a^2\)

\(=2\cdot2a^2\cdot\left(b-c\right)\left(b+c\right)\)

\(=4a^2\cdot\left(b-c\right)\left(b+c\right)\)

6) \(G=\left(a+b+c\right)^2+\left(a+b-c\right)^2-2\left(a+b\right)^2\)

\(=a^2+b^2+c^2+2ab+2ac+2bc+a^2+b^2+\left(-c\right)^2+2ab-2ac-2bc-2\left(a^2+2ab+b^2\right)\)

\(=a^2+b^2+c^2+2ab+a^2+b^2+\left(-c\right)^2+2ab-2a^2-4ab-2b^2\)

\(=0+0+c^2+0+c^2\)

\(=2c^2\)

7) \(H=\left(a+c\right)\left(a-c\right)-\left(a-b-c\right)\left(a-b+c\right)+b\left(b-2x\right)\)

\(=a^2-c^2-\left[\left(a-b\right)^2-c^2\right]+b^2-2bx\)

\(=a^2-c^2-\left(a^2-2ab+b^2-c^2\right)+b^2-2bx\)

\(=a^2-b^2-a^2+2ab-b^2+c^2+b^2-2bx\)

\(=2ab-2bx\)

21 tháng 6 2017

\(D=\left(9x-1\right)^2+\left(1-5x\right)^2+2\left(9x-1\right)\left(1-5x\right)=\left(9x-1+1-5x\right)^2=\left(4x\right)^2=16x^2\)

a, \(5\left(2x-1\right)^2+4\left(x-1\right)\left(x+3\right)-2\left(5-3x\right)^2\)

\(=20x^2-20x+5+4x^2+12x-4x-12-50+60x-18x^2\)

\(=6x^2+48x-57\)

b, \(\left(9x-1\right)^2+\left(1-5x\right)^2+2\left(9x-1\right)\left(1-5x\right)\)

\(=81x^2-18x+1+1-10x+25x^2+18x-90x^2-2+10x\)

\(=16x^2\)

c;d;e;f tự làm, đầu I giữ lấy còn trường tồn:) 

10 tháng 8 2020

\(5\left(2x-1\right)^2+4\left(x-1\right)\left(x+3\right)-2\left(5-3x\right)^2\)

\(=5\left(4x^2-4x+1\right)+4\left(x^2+2x-3\right)-2\left(25-30x+9x^2\right)\)

\(=20x^2-20x+5+4x^2+8x-12-50+60x-18x^2\)

\(=\left(20x^2+4x^2-18x^2\right)+\left(60x+8x-20x\right)+\left(5-12-50\right)\)

\(=6x^2+48x-57\)

11 tháng 12 2022

a: \(=\dfrac{6x^2-3x+4x^2+2x}{\left(2x-1\right)\left(2x+1\right)}\cdot\dfrac{\left(2x-1\right)^2}{2x\left(4x+5\right)}\)

\(=\dfrac{10x^2+x}{\left(2x+1\right)}\cdot\dfrac{2x-1}{2x\left(4x+5\right)}\)

\(=\dfrac{\left(10x^2+x\right)\left(2x-1\right)}{2x\cdot\left(2x+1\right)\left(4x+5\right)}\)

b: \(=\left(\dfrac{x}{\left(5x-1\right)\left(5x+1\right)}\cdot\dfrac{x\left(5x+1\right)}{5x}\right)\cdot\dfrac{x\left(5x+1\right)}{5x-1}+\dfrac{x}{5x-1}\)

\(=\dfrac{x}{5\left(5x-1\right)}\cdot\dfrac{x\left(5x+1\right)}{5x-1}+\dfrac{x}{5x-1}\)

\(=\dfrac{x^2\left(5x+1\right)+5x\left(5x-1\right)}{5\left(5x-1\right)^2}\)

\(=\dfrac{5x^3+x^2+25x^2-5x}{5\left(5x-1\right)^2}=\dfrac{5x^3+26x^2-5x}{5\left(5x-1\right)^2}\)

c: \(=\dfrac{x+1}{x-2}+\dfrac{1-3x}{x\left(x^2+1\right)}\cdot\dfrac{x^2+1}{x-1}\)

\(=\dfrac{x+1}{x-2}+\dfrac{1-3x}{x\left(x-1\right)}\)
\(=\dfrac{x^3-x+\left(1-3x\right)\left(x-2\right)}{x\left(x-1\right)\left(x-2\right)}\)

\(=\dfrac{x^3-x+x-2-3x^2+6x}{x\left(x-1\right)\left(x-2\right)}=\dfrac{x^3-3x^2+6x-2}{x\left(x-1\right)\left(x-2\right)}\)

2 tháng 7 2018

a) (2a2+2a+1).(2a2-2a+1)-(2a2+1)2

Áp dụng hằng đẳng thức A2- B2= (A+B)(A-B)

ta có : (2a2+1)2 - (2a)2 - (2a2+1)2

= 4a2

25 tháng 7 2019

a. (5x-1)2  -  (5x-4) (5x-4) +7

= (5x-1)2 - (5x-4) + 7

=[(5x-1)+(5x-4)] [(5x-1)-(5x-4)] +7  ( đoạn này bỏ cx đc)

=(10x-5) .3+7

=30x-15+7

=30x-8

25 tháng 7 2019

ý a hơi sai sai

20 tháng 8 2017

\(A=\left(x-y+z\right)^2+\left(z-y\right)^2+2\left(x-y+z\right)\left(y-z\right)=\left(x-y+z\right)\left[\left(x-y+z\right)+2\left(y-z\right)\right]+\left(z-y\right)^2=\left(x-y+z\right)\left[x+y-z\right]+\left(z-y\right)^2\)\(A=x^2-\left(y-z\right)^2+\left(z-y\right)^2=x^2\)

11 tháng 8 2018

Bài 4 : \(\left(x^2+5x\right)^2-2\left(x^2+5x\right)-24=0\)

Đặt \(x^2+5x=a\) . Phương trình trở thành :

\(a^2-2a-24=0\)

\(\Leftrightarrow\left(a+4\right)\left(a-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a+4=0\\a-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=-4\\a=6\end{matrix}\right.\)

Với \(a=-4\)

\(\Leftrightarrow x^2+5x=-4\)

\(\Leftrightarrow x^2+5x+4=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-4\end{matrix}\right.\)

Với \(a=6\)

\(\Leftrightarrow x^2+5x=6\)

\(\Leftrightarrow x^2+5x-6=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)

Vậy \(S=\left\{-1;2;-3;-4\right\}\)

11 tháng 8 2018

1) x4 - 5x2 + 4 = 0

⇔ x4 - x2 - 4x2 + 4 = 0

⇔ x2(x2 - 1) - 4(x2 - 1) = 0

⇔ (x2 - 1)(x2 - 4) = 0

\(\left\{{}\begin{matrix}x^2-1=0\\x^2-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\pm1\\x=\pm2\end{matrix}\right.\)

Vậy \(x=\pm1\)\(x=\pm2\)