Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{a+b}{2}\ge\sqrt{ab}\)
\(\Leftrightarrow\frac{a^2+2ab+b^2}{4}-ab\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng \(\forall a,b\) )
=>đpcm
Cô si
\(\frac{bc}{a}+\frac{ca}{b}\ge2\sqrt{\frac{bc}{a}\cdot\frac{ca}{b}}=2c\)
\(\frac{ca}{b}+\frac{ab}{c}\ge2\sqrt{\frac{ca}{b}\cdot\frac{ab}{c}}=2a\)
\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab}{c}\cdot\frac{bc}{a}}=2b\)
Cộng lại ta có:
\(2\left(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\right)\ge2\left(a+b+c\right)\Rightarrowđpcm\)
a)\(\sqrt{x}+1>\sqrt{x+1}\) (x>0)
Có:\(\left(\sqrt{x}+1\right)^2=x+2\sqrt{x}+1\left(1\right)\) (x>0)
\(\sqrt{\left(x+1\right)^2}=x+1\) (2) (x>0)
từ (1) và (2) =>(đpcm)
b)\(\sqrt{x^2+1}>x\)
Có:\(\sqrt{\left(x^2+1\right)^2}=x^2+1\left(1\right)\)
x2=x2 (2)
Từ (1) và (2) =>(đpcm)
c)\(\frac{1}{2}+a+b\ge\sqrt{a}+\sqrt{b}\left(a,b\ge0\right)\)
Vì a,b >or= 0
=>\(a+b\ge\sqrt{a}+\sqrt{b}\)
\(\Rightarrow\frac{1}{2}+a+b\ge\sqrt{a}+\sqrt{b}\) (đáng lẽ 1/2+a+b> mới phải)
\(\frac{a+b}{2}\ge\sqrt{ab}\Leftrightarrow a+b\ge2\sqrt{ab}\)
<=>\(a+b-2\sqrt{ab}\ge0\)
<=>\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)(luôn đúng)
=>dpcm
a, Đặt \(\sqrt[4]{a}=x;\sqrt[4]{b}=y.\)Bất đẳng thức ban đầu trở thành: \(\frac{2x^2y^2}{x^2+y^2}\le xy.\)
ta có : \(x^2+y^2\ge2xy\Rightarrow\frac{2x^2y^2}{x^2+y^2}\le\frac{2x^2y^2}{2xy}=xy.\)(đpcm )
dấu " = " xẩy ra khi x = y > 0
vậy bất đăng thức ban đầu đúng. dấu " = " xẩy ra khi a = b >0
\(VT=\frac{\left(a\sqrt{b}+b\sqrt{a}\right)\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}=\frac{a\sqrt{ab}-ab+ab-b\sqrt{ab}}{\sqrt{ab}}=.\)
\(=\frac{\sqrt{ab}\left(a-b\right)}{\sqrt{ab}}=a-b\left(dpcm\right)\)
trả lời
dùng bất đẳng thức cosi cho 2 số ko âm
sử dụng cộng mỗi cặp trên
đc 3 cặp
cộng lại là ra
Ta có:\(VT=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}=\frac{a}{b}+\frac{b}{a}+\frac{b}{c}+\frac{c}{b}+\frac{c}{a}+\frac{a}{c}\)
Xét:\(\left(x-y\right)^2\ge0\forall x,y\)
\(\Leftrightarrow x^2+y^2\ge2xy\)
\(\Leftrightarrow\frac{x^2+y^2}{xy}\ge2\)
\(\Leftrightarrow\frac{x}{y}+\frac{y}{x}\ge2\left(1\right)\)
Áp dụng BĐT \(\left(1\right)\)ta được:
\(VT\ge6\)
Ta có:\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
\(=\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}\)
\(=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\ge\frac{9}{2\left(a+b+c\right)}\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\ge\frac{9}{2}\)
\(\Rightarrow VP\ge4\left(\frac{9}{2}-3\right)=6\)
Trừ vế với vế ta được:
\(VT-VP\ge0\Rightarrow VT\ge VP\left(đpcm\right)\)
Dấu '=' xảy ra khi \(a=b=c\)
^^
Con Chim 7 Màu sai rồi nha =))
VT > 6 và VP > 6 thì VP - VT > 0 chứ ko chỉ VT - VP > 0 nhé =))
Lời giải như sau :
Bài 1, \(CMR:\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\ge4\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\left(a;b;c>0\right)\)
Áp dụng bđt quen thuộc \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\left(x;y>0\right)\) được
\(\frac{4}{b+c}\le\frac{1}{b}+\frac{1}{c}\Rightarrow\frac{4a}{b+c}\le\frac{a}{b}+\frac{a}{c}\)
Chứng mình tương tự \(\frac{4b}{c+a}\le\frac{b}{c}+\frac{b}{a}\)
\(\frac{4c}{a+b}\le\frac{c}{a}+\frac{c}{b}\)
Cộng 3 vế của bđt lại ta được
\(4\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\le\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\left(Đpcm\right)\)
Dấu "=" tại a = b = c
_______________________________________________________________________
Bài 2 , CMR \(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}>2\left(a;b;c>0\right)\)
Áp dụng bđt Cô-si có
\(a+b+c=a+\left(b+c\right)\ge2\sqrt{a\left(b+c\right)}\)
\(\Rightarrow\frac{2}{a+b+c}\le\frac{1}{\sqrt{a\left(b+c\right)}}\)
\(\Rightarrow\frac{2a}{a+b+c}\le\sqrt{\frac{a}{b+c}}\)(Nhân cả 2 vế với a > 0)
C/m tương tự \(\frac{2b}{a+b+c}\le\sqrt{\frac{b}{a+c}}\)
\(\frac{2c}{a+b+c}\le\sqrt{\frac{c}{a+b}}\)
Cộng 3 vế của 3 bđt lại được
\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}\ge\frac{2\left(a+b+c\right)}{a+b+c}=2\)
Dấu "=" ko xảy ra nên ta được đpcm
Áp dụng BĐT AM-GM ta có:
\(\frac{1}{\sqrt{AB}}=\frac{2}{2\sqrt{AB}}\ge\frac{2}{A+B}\)(đpcm)
p/s: tham khảo
chúc bn hk tốt