\(\frac{9^9.8^2}{27^5.6^3}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2018

(9^9.8^2)/(3^15.2^3.2^3)

(3^18.2^6)/(3^18.2^3)

2^3

7 tháng 10 2018

\(C=\frac{9^9.8^2}{27^5.6^3}\)

   \(=\frac{\left(3^2\right)^9.2^6}{\left(3^3\right)^5.\left(2.3\right)^3}\)

   \(=\frac{3^{18}.2^6}{3^{15}.2^3.3^3}\)

    \(=\frac{3^{18}.2^3.2^3}{3^{18}.2^3}=2^3=8\)

28 tháng 8 2019

                                                               Bài giải

Ta có : 

\(\frac{2^{27}\cdot9^4}{6^9\cdot8^5}=\frac{2^{27}\cdot\left(3^2\right)^4}{\left(2\cdot3\right)^9\cdot\left(2^3\right)^5}=\frac{2^{27}\cdot3^8}{3^9\cdot2^9\cdot2^{15}}=\frac{2^{27}\cdot3^8}{3^9\cdot2^{24}}=\frac{2^{24}\cdot3^8\cdot2^3}{2^{24}\cdot3^8\cdot3}=\frac{2^3}{3}=\frac{8}{3}\)

28 tháng 8 2019

                                                               Bài giải

Ta có : 

\(\frac{2^{27}\cdot9^4}{6^9\cdot8^5}=\frac{2^{27}\cdot\left(3^2\right)^4}{\left(2\cdot3\right)^9\cdot\left(2^3\right)^5}=\frac{2^{27}\cdot3^8}{3^9\cdot2^9\cdot2^{15}}=\frac{2^{27}\cdot3^8}{3^9\cdot2^{24}}=\frac{2^3}{3}=\frac{8}{3}\)

22 tháng 8 2016

a ) \(\frac{-5}{9}:\frac{-7}{18}+1\frac{2}{7}\)

\(=\frac{-5}{9}.-\frac{18}{7}+\frac{9}{7}\)

\(=\frac{-5.-18}{9.7}+\frac{9}{7}\)

\(=\frac{10}{7}+\frac{9}{7}\)

\(=\frac{10+9}{7}\)

\(=\frac{19}{7}\)

 

22 tháng 8 2016

\(\frac{2^{27}\times9^4}{6^9\times8^5}=\frac{2^{27}\times\left(3^2\right)^4}{\left(2\times3\right)^9\times\left(2^3\right)^5}=\frac{2^{27}\times3^8}{2^9\times3^9\times2^{15}}=\frac{2^3}{3}=\frac{8}{3}\)

\(\sqrt{13^2}-5^2+\sqrt{3^2+4^2}-\sqrt{\left(-7\right)^2}=13-25+\sqrt{9+16}-\sqrt{49}=13-25+5-7=-14\)

21 tháng 10 2016

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

=\(\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)

=\(\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\)

=\(\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)

23 tháng 3 2018

1/ (69.210+1210)+(219.273+15.49.94)  = 29.39.210+310.220+219.39+5.3.218.38 = 219.39+310.220+219.39+5.218.39

218.39(2+3.22+5)=19.218.39

19 tháng 7 2018

sao bạn lại nhắn vớ va vớ vậy PHẠM ĐỨC PHÚC

21 tháng 7 2019

a,=1/8*1/16=1/108

b,=(27/9)^3=3^3=27

c,=125^2/25^2*25=5^2*25=25*25=225

30 tháng 8 2016

\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{49}+\frac{1}{50}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{49}+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\)

\(=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\)

Chứng tỏ ...

30 tháng 8 2016

Cảm ơn.mik cũng vừa giải được.hì hì :)))))))))))

26 tháng 6 2019

\(\frac{1}{1.2}+\frac{1}{3.4}+......+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{3}-....+\frac{1}{49}-\frac{1}{50}=\left(1+\frac{1}{3}+....+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{50}\right)=\left(1+\frac{1}{2}+.....+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)=\left(1+\frac{1}{2}+....+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{25}\right)=\frac{1}{26}+\frac{1}{27}+....+\frac{1}{50}\left(đpcm\right)\)

\(theocaua\Rightarrow A=\frac{1}{26}+\frac{1}{27}+......+\frac{1}{50}>\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\left(5sohang\right)+\frac{1}{40}+\frac{1}{40}+....+\frac{1}{40}\left(10sohang\right)+\frac{1}{50}+\frac{1}{50}+....+\frac{1}{50}\left(10sohang\right)=\frac{1}{4}+\frac{1}{5}+\frac{1}{6}=\frac{37}{60}>\frac{35}{60}=\frac{7}{12}\left(1\right)\)

\(A=\frac{1}{26}+\frac{1}{27}+....+\frac{1}{50}< \frac{1}{25}+\frac{1}{25}+...+\frac{1}{25}\left(5sohang\right)+\frac{1}{30}+\frac{1}{30}+....+\frac{1}{30}\left(10sohang\right)+\frac{1}{40}+\frac{1}{40}+.....+\frac{1}{40}\left(10sohang\right)=\frac{1}{4}+\frac{1}{3}+\frac{1}{5}=\frac{47}{60}< \frac{5}{6}=\frac{50}{60}\left(2\right)\) \(\left(1\right);\left(2\right)\Rightarrow\frac{7}{12}< A< \frac{5}{6}\)

9 tháng 8 2020

LÊN MẠNG TS

8 tháng 7 2016

\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{49}+\frac{1}{50}\)

Xét vế trái

\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{49}+\frac{1}{50}-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{49}+\frac{1}{50}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\)

\(=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)= vế phải

\(\Rightarrow\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\) (Đpcm)