\(\frac{1}{15}\) + \(\frac{1}{35}\)+ ...... + 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2018

Trả lời

\(C=\frac{1}{15}+\frac{1}{35}+...+\frac{1}{2499}\)

\(\Rightarrow C=\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{...1}{49\cdot51}\)

\(\Rightarrow2C=2\left(\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{49\cdot51}\right)\)

\(\Rightarrow2C=\frac{2}{1\cdot3}+\frac{2}{5\cdot7}+...+\frac{2}{49\cdot51}\)

\(\Rightarrow2C=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\)

\(\Rightarrow2C=1-\frac{1}{51}\)

\(\Rightarrow2C=\frac{50}{51}\)

\(\Rightarrow C=\frac{50}{51}:2\)

\(\Rightarrow C=\frac{25}{51}\)

Vậy \(C=\frac{25}{51}\)

6 tháng 5 2018

\(=\frac{16}{51}\)

7 tháng 5 2019

\(A=\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{49\cdot51}\)

\(\Rightarrow A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\)

\(\Rightarrow A=\frac{1}{3}-\frac{1}{51}=\frac{17}{51}-\frac{1}{51}=\frac{16}{51}\)

\(B=5\cdot\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-...+\frac{1}{100}-\frac{1}{103}\right)\)

\(\Rightarrow B=5\cdot\left(1-\frac{1}{103}\right)=5\cdot\frac{102}{103}=\frac{510}{103}\)

\(C=5\cdot\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{101}\right)\)

\(\Rightarrow C=5\cdot\left(1-\frac{1}{101}\right)=5\cdot\frac{100}{101}=\frac{500}{101}\)

7 tháng 5 2019

\(B=\frac{5}{1.4}+\frac{5}{4.7}+...+\frac{5}{100.103}\)

\(B=\frac{5}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{100.103}\right)\)

\(B=\frac{5}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\right)\)

\(B=\frac{5}{3}\left(1-\frac{1}{103}\right)\)

\(B=\frac{5}{3}.\frac{102}{103}=\frac{170}{103}\)

\(C=\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.101}\)

\(C=\frac{5}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)\)

\(C=\frac{5}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(C=\frac{5}{2}\left(1-\frac{1}{101}\right)\)

\(C=\frac{5}{2}.\frac{100}{101}=\frac{250}{101}\)

1 tháng 8 2020

\(M=\frac{1}{15}+\frac{1}{35}+...+\frac{1}{2499}\)

\(\Rightarrow M=\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}\)

\(\Rightarrow2M=\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\)

\(\Rightarrow2M=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\)

\(\Rightarrow2M=\frac{1}{3}-\frac{1}{51}\)

\(\Rightarrow2M=\frac{16}{51}\)

\(\Rightarrow M=\frac{8}{51}\)

\(N=\frac{-5}{1.3}+\frac{-5}{3.5}+...+\frac{-5}{2013.2015}\)

\(\Rightarrow N=-\frac{5}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{2013.2015}\right)\)

\(\Rightarrow N=-\frac{5}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2013}-\frac{1}{2015}\right)\)

\(\Rightarrow N=-\frac{5}{2}\left(1-\frac{1}{2015}\right)\)

\(\Rightarrow N=-\frac{5}{2}.\frac{2014}{2015}\)

\(\Rightarrow N=-\frac{1007}{403}\)

5 tháng 5 2017

\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=\frac{1}{2}-\frac{1}{100}\)

\(A=\frac{49}{100}\)

5 tháng 5 2017

\(B=\frac{5}{1.4}+\frac{5}{4.7}+...+\frac{5}{100.103}\)

\(B=\frac{5}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{100.103}\right)\)

\(B=\frac{5}{3}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\right)\)

\(B=\frac{5}{3}.\left(\frac{1}{1}-\frac{1}{103}\right)\)

\(B=\frac{510}{103}\)

26 tháng 4 2018

\(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}=\frac{1}{2}.(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51})\)

\(=\frac{1}{3}-\frac{1}{51}=\frac{16}{51}\)

26 tháng 4 2018

\(C=\frac{1}{15}+\frac{1}{35}+...+\frac{1}{2499}\)

\(C=\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}\)

\(C=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\)

\(C=\frac{1}{3}-\frac{1}{51}\)

\(C=\frac{16}{51}\)

26 tháng 4 2018

Câu \(C=\left(...\right)\) thiếu đề 

Ta có : 

\(\frac{1}{2^2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}\)

\(............\)

\(\frac{1}{10^2}< \frac{1}{9.10}\)

\(\Rightarrow\)\(D=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{10^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}\)

\(\Rightarrow\)\(D< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)

\(\Rightarrow\)\(D< 1-\frac{1}{10}< 1\)

\(\Rightarrow\)\(D< 1\) ( đpcm ) 

Vậy \(D< 1\)

Chúc bạn học tốt ~ 

26 tháng 4 2018

\(C=\frac{1}{15}+\frac{1}{35}+....+\frac{1}{2499}\)

\(C=\frac{1}{3.5}+\frac{1}{5.7}+........+\frac{1}{49.51}\)

\(C=\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{49.51}\right)\)

\(C=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+......+\frac{1}{49}-\frac{1}{51}\right)\)

\(C=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{51}\right)\)

\(C=\frac{1}{2}.\frac{16}{51}\)

\(C=\frac{8}{51}\)

\(D=\frac{1}{2^2}+\frac{1}{3^2}+......+\frac{1}{10^2}\)

ta có :

\(\frac{1}{2^2}=\frac{1}{2.2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}=\frac{1}{3.3}< \frac{1}{2.3}\)

\(....................\)

\(\frac{1}{10^2}=\frac{1}{10.10}< \frac{1}{9.10}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+......+\frac{1}{10^2}< \frac{1}{1.2}+\frac{1}{2.3}+........+\frac{1}{9.10}\)

\(\Rightarrow D< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+........+\frac{1}{9}-\frac{1}{10}\)

\(\Rightarrow D< 1-\frac{1}{10}\)

\(\Rightarrow D< \frac{9}{10}\) ( 1 )

mà \(\frac{9}{10}< 1\) ( 2 )

từ ( 1 ) và ( 2 ) \(\Rightarrow D< 1\left(\text{đ}pcm\right)\)

7 tháng 6 2016

a) \(\frac{1}{n}-\frac{1}{n+a}=\frac{\left(n+a\right)-n}{n\left(n+a\right)}=\frac{a}{a\left(n+a\right)}\) (đpcm)

b) \(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)

\(B=\frac{5}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\right)=\frac{5}{3}.\left(1-\frac{1}{103}\right)=\frac{5}{3}.\frac{102}{103}=\frac{170}{103}\)

\(C=\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}=\frac{1}{3}-\frac{1}{51}=\frac{16}{51}\)

10 tháng 4 2017

C=1/15+1/35+1/63+..+1/2499

   =1/3.5+1/5.7+1/7.9+...+1/49.51

  =1/2(2/3.5+2/5.7+2/7.9+...+2/49.51)

  =1/2(1/3-1/5+1/5-1/7+1/7-1/9+...+1/49-1/51)

  =  1/2.(1/3-1/51)

  =1/2.16/51 

  =8/51

26 tháng 4 2018

Ta có : 

\(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{2499}\)

\(=\)\(\frac{1}{2}\left(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{2499}\right)\) ( bước này hơi khó hiểu tí nhé ) 

\(=\)\(\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\right)\) ( phân tích mẫu ) 

\(=\)\(\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\) ( áp dụng công thức thoi ) 

\(=\)\(\frac{1}{2}\left(1-\frac{1}{51}\right)\) ( loại bỏ nhưng phân số đối nhau ) 

\(=\)\(\frac{1}{2}.\frac{50}{51}\)

\(=\)\(\frac{25}{51}\)

Chúc bạn học tốt ~ 

26 tháng 4 2018

ĐẶT \(A\)\(=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{49\cdot51}\)

\(2.A=\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{49\cdot51}\)

\(2.A=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\)

\(2.A=1-\frac{1}{51}\)

\(2.A=\frac{50}{51}\)

\(\Rightarrow A=\frac{50}{51}\div2=\frac{25}{51}\)

6 tháng 4 2017

\(C=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+.....+\frac{1}{49.51}\)

\(C=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{49}-\frac{1}{51}\right)\)

\(C=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{51}\right)\)

\(C=\frac{1}{2}.\frac{16}{51}=\frac{8}{51}\)

6 tháng 4 2017

\(C=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{51}\right)\)

\(C=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{51}\right)=\frac{8}{51}\)