Bài 5 : Cho \(\Delta ABC\) có AB = AC , lấy M là trung điểm của BC . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD = CE . Chứng minh :b )\(\Delta ABD=\Delta ACE\) a ) AM vuông góc với BC c )\(\Delta ACD=\Delta ABE\) d ) AM là tia phân giác của góc DAEBài 6 : Cho tam giác ABC ( AC > AB ) . Tia phân giác của góc BAC cắt BC tại D. Trên cạnh AC lấy E sao cho AE = AB .a ) Chứng minh BD...
Đọc tiếp
Bài 5 : Cho \(\Delta ABC\) có AB = AC , lấy M là trung điểm của BC . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD = CE . Chứng minh :
b )\(\Delta ABD=\Delta ACE\) a ) AM vuông góc với BC
c )\(\Delta ACD=\Delta ABE\) d ) AM là tia phân giác của góc DAE
Bài 6 : Cho tam giác ABC ( AC > AB ) . Tia phân giác của góc BAC cắt BC tại D. Trên cạnh AC lấy E sao cho AE = AB .
a ) Chứng minh BD = DE
b ) Kéo dài AB và DE cắt nhau tại K. Chứng minh góc AKD bằng góc ACD .
c ) Chứng minh \(\Delta KBE=\Delta CEB\)
d ) Tìm điều kiện của tam giác ABC để DE vuông góc với AC .
Bài 7 Cho tam giác ABC , P là trung điểm của AB . Đường thẳng qua P và song song với BC cắt AC ở đường thẳng qua Q và song song với AB cắt BC ở F. Chứng minh rằng :
a ) AP = QF
b ) \(\Delta APQ=\Delta QFC\)
c ) Q là trung điểm của AC
d ) Lấy điểm I thuộc tia đối của tia QP sao cho QI = QP . Chứng minh CI // AB
Bài 8 : Cho đoạn thẳng AB . Trên hai nửa mặt phẳng đối nhau bờ AB , kẻ tia Ax và By cùng vuông góc với AB . Trên tia Ax , By lần lượt lấy hai điểm C , D sao cho AC = BD .
a ) Chứng minh AD = BC
. b ) Chứng minh AD // BC .
c ) Gọi 0 là trung điểm của AB . Trên BC lấy điểm E , trên AD lấy điểm F sao cho CE = DF . Chứng minh ( là trung điểm của EF .
Mình đang cần gấp ạ
a ) Tam giác ABC cân tại A => AB = AC và \(\widehat{ABC}=\widehat{ACB}\)
=> \(\widehat{B}=\frac{180^o-\widehat{A}}{2}\) ( 1 )
Ta có : AB = AD + BD
AC = AE + CE
Mà AB = AC , BD = CE
=> AD = AE
=> Tam giác ADE cân tại A
=> \(\widehat{ADE}=\frac{180^o-\widehat{A}}{2}\) ( 2 )
Từ ( 1 ) và ( 2 ) => \(\widehat{B}=\widehat{ADE}\)
Mà 2 góc này ở vị trí đồng vị
=> DE // BC
b ) Xét \(\Delta ABE\)và \(\Delta ACD\)có :
AB = AC ( do tam giác ABC cân tại A )
\(\widehat{A}\) là góc chung
AD = AE ( do tam giác ADE cân tại A )
=> \(\Delta ABE=\Delta ACD\)( c.g.c )
c ) Xét \(\Delta DBC\)và \(\Delta ECB\)có :
BD = CE ( gt )
\(\widehat{DBC}=\widehat{ECB}\)( do tam giác ABC cân tại A )
BC là cạnh chung
=> \(\Delta DBC=\Delta ECB\)( c.g.c )
=> \(\widehat{DCB}=\widehat{EBC}\)
=> Tam giác IBC cân tại I
=> IB = IC
Xét \(\Delta AIB\)và \(\Delta AIC\)có :
AI là cạnh chung
AB = AC ( do tam giác ABC cân tại A )
IB = IC ( cmt )
=> \(\Delta AIB=\Delta AIC\)( c.c.c)
=> \(\widehat{BAI}=\widehat{CAI}\)
=> AI là tia p/g của góc A