Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) \(M=\frac{2019}{2020}+\frac{2020}{2021}\) và \(N=\frac{2019+2020}{2020+2021}\)
Ta có \(\frac{2019}{2020}>\frac{2019}{2020+2021}\)
\(\frac{2020}{2021}>\frac{2020}{2020+2021}\)
\(\Rightarrow\frac{2019}{2020}+\frac{2020}{2021}< \frac{2019+2020}{2020+2021}=N\)
\(\Rightarrow M>N\)
c)ta thấy 125*5^12=(5^3)*(5^12)=5^15 , =>124*5^12 <5^15
Đặt A = \(\frac{2019^{2019}+1}{2019^{2020}+1}\)
=> \(2019A=\frac{2019^{2020}+2019}{2019^{2020}+1}=1+\frac{2018}{2019^{2020}+1}\)
Đặt B = \(\frac{2019^{2020}+1}{2019^{2021}+1}\)
=> \(2019B=\frac{2019^{2021}+2019}{2019^{2021}+1}=1+\frac{2018}{2019^{2021}+1}\)
Vì \(\frac{2018}{2019^{2020}+1}>\frac{2018}{2019^{2021}+1}\Rightarrow1+\frac{2018}{2019^{2020}+1}>1+\frac{2018}{2019^{2021}+1}\Rightarrow10A>10B\Rightarrow A>B\)
a, \(x^5-x^2=0\)
\(\Rightarrow x^2\left(x^3-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2=0\\x^3-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x^3=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=1\end{cases}}}\)
b, \(x^{2020}-x^{2019}=0\)
\(\Rightarrow x^{2019}\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^{2019}=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}}\)
c, \(\left(x-5\right)^4=\left(x-5\right)^6\)
\(\Rightarrow\left(x-5\right)^6-\left(x-5\right)^4=0\)
\(\Rightarrow\left(x-5\right)^4\left[\left(x-5\right)^4-1\right]\)
\(\Rightarrow\orbr{\begin{cases}\left(x-5\right)^4=0\\\left(x-5\right)^4-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x-5=0\\x-5=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=5\\x=6\end{cases}}}\)
a) \(x^5-x^2=0\)
\(\Rightarrow x^2\left(x^3-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2=0\\x^3-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x^3=1\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=1\end{cases}}}\)
Vậy \(x\in\left\{0;1\right\}\)
b) \(x^{2020}-x^{2019}=0\)
\(\Rightarrow x^{2019}\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^{2019}=0\\x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}}\)
Vậy \(x\in\left\{0;1\right\}\)
Câu c tương tự nhé em!
Chúc em học tốt nhé!
BÀI 1 :
a) |-15|+(-27)+8+|-23|
= 15-27+8+23
=19
b) 5\(^8\):5\(^6\)+2\(^2\).3\(^3\)-2020\(^0\)
= 5\(^2\)+4.27-1
=25+108-1
=132
BÀI 2 :
a) 7\(^x\).49=7\(^{50}\)
=> 7\(^x\).7\(^2\)=7\(^{50}\)
=> 7\(^x\)=7\(^{50}\):7\(^2\)=7\(^{48}\)
=> x= 48
vậy x = 48
b) ( 3x - 1 )\(^3\) = 125
=> ( 3x - 1 )\(^3\) = 5\(^3\)
=> 3x - 1 = 5
=> 3x = 6
=> x = 2
Vậy x = 2
c) Câu c bạn viết lại đề bài nhé. Mk giải sau
Theo đầu bài ta có:
\(2^x+2^{x+1}+2^{x+2}+...+2^{x+2015}=2^{2019}-8\)
\(\Rightarrow2\left(2^x+2^{x+1}+2^{x+2}+...+2^{x+2015}\right)-\left(2^x+2^{x+1}+2^{x+2}+...+2^{x+2015}\right)=2^{2019}-8\)
\(\Rightarrow\left(2^{x+1}+2^{x+2}+2^{x+3}+...+2^{x+2016}\right)-\left(2^x+2^{x+1}+2^{x+2}+...+2^{x+2015}\right)=2^{2019}-8\)
\(\Rightarrow2^{x+2016}-2^x=2^{2019}-8\)
\(\Rightarrow2^x\cdot2^{2016}-2^x=2^3\cdot2^{2016}-2^3\)
\(\Rightarrow2^x\left(2^{2016}-1\right)=2^3\left(2^{2016}-1\right)\)
\(\Rightarrow2^x=2^3\)
\(\Rightarrow x=3\)
\(\left(x-2019\right)^{2020}=1\)
\(\left(x-2019\right)^{2020}=1^{2020}\)
\(x-2019=1\)
\(x=1+2019\)
\(x=2020\)
\(b,5^{x+1}-2\cdot4^2=10^2-7\)
\(5^{x+1}-2\cdot16=100-7\)
\(5^{x+1}-32=93\)
\(5^{x+1}=93+32=125\)
\(5^{x+1}=5^3\)
\(x+1=3\)
\(x=3-1\)
\(x=2\)
\(\left(x-2019\right)^{2020}=1\)
a,\(\left(x-2019\right)^{2020}=1^{2020}\)
\(\Rightarrow\orbr{\begin{cases}x-2019=1\Rightarrow x=2020\\x-2019=-1\Rightarrow x=2018\end{cases}}\)
b,\(2:5^{x+1}-2.4^2=10^2-7\)
\(5^{x+1}-2.16=100-7\)
\(5^{x+1}-32=93\)
\(5^{x+1}=93+32\)
\(5^{x+1}=125\)
\(5^{x+1}=5^3\)
Vì \(5=5\)
\(\Rightarrow x+1=3\)
\(x=3-1\)
\(x=2\)