Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(\Leftrightarrow\left(x-6\right)\left(x+7\right)+5\left(x-6\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left[\left(x+7\right)+5\left(3x-1\right)\right]=0\)
\(\Leftrightarrow\left(x-6\right)\left(16x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\16x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-\frac{1}{8}\end{matrix}\right.\)
4. \(\Leftrightarrow\left(x+5\right)^2\left(3x+2\right)^2-x^2\left(x+5\right)^2=0\)
\(\Leftrightarrow\left(x+5\right)^2\left[\left(3x+2\right)^2-x^2\right]=0\)
\(\Leftrightarrow\left(x+5\right)^2\left(2x+2\right)\left(4x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x+5\right)^2=0\\2x+2=0\\4x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\2x=-2\\4x=-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-1\\x=-\frac{1}{2}\end{matrix}\right.\)
2/ 5x ( 12x + 7 ) - ( 3x + 1 ) ( 20x - 5 ) = -100
\(\Leftrightarrow\) 60x2 + 35x - 60x2 + 15x - 20x + 5 = -100
\(\Leftrightarrow\) 30x = -100 - 5
\(\Leftrightarrow\) x = - 3,5
4/ ( x + 5 ) 2 + ( x + 4 ) ( x - 4 ) = 0
\(\Leftrightarrow\) x2 + 10x + 25 + x2 - 4 = 0
\(\Leftrightarrow\) 2x2 + 10x + 21 = 0
---> Phương trình vô nghiệm
Sửa đề bài : 4/ ( x + 5 ) 2 - ( x + 4 ) ( x - 4 ) = 0
\(\Leftrightarrow\) x2 + 10x + 25 - x2 + 4 = 0
\(\Leftrightarrow\) 10x = - 29
\(\Leftrightarrow\) x = \(-\dfrac{29}{10}\)
Vậy phương trình có nghiệm.......
a) Ta có: \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
\(\Leftrightarrow2\cdot A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)
\(\Leftrightarrow2\cdot A-A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)
\(\Leftrightarrow A=1-\frac{1}{2^{100}}\)
1.
\((2x+1)(x^2+2)=0\Rightarrow \left[\begin{matrix} 2x+1=0\\ x^2+2=0\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} x=\frac{-1}{2}\\ x^2=-2< 0(\text{vô lý})\end{matrix}\right.\)
Vậy \(x=-\frac{1}{2}\)
2.\((x^2+4)(7x-3)=0\Rightarrow \left[\begin{matrix} x^2+4=0\\ 7x-3=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x^2=-4< 0(\text{vô lý})\\ x=\frac{3}{7}\end{matrix}\right.\)
Vậy \(x=\frac{3}{7}\)
3.
\((x-5)(3-2x)(3x+4)=0\)
\(\Rightarrow \left[\begin{matrix} x-5=0\\ 3-2x=0\\ 3x+4=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=5\\ x=\frac{3}{2}\\ x=-\frac{4}{3}\end{matrix}\right.\)
4.
\((x-2)(3x+5)=(2x-4)(x+1)\)
\(\Leftrightarrow (x-2)(3x+5)-(2x-4)(x+1)=0\)
\(\Leftrightarrow (x-2)(3x+5)-2(x-2)(x+1)=0\)
\(\Leftrightarrow (x-2)[(3x+5)-2(x+1)]=0\)
\(\Leftrightarrow (x-2)(x+3)=0\Rightarrow \left[\begin{matrix} x-2=0\\ x+3=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=2\\ x=-3\end{matrix}\right.\)
5.
\((2x+5)(x-4)=(x-5)(4-x)\)
\(\Leftrightarrow (2x+5)(x-4)-(x-5)(4-x)=0\)
\(\Leftrightarrow (2x+5)(x-4)+(x-5)(x-4)=0\)
\(\Leftrightarrow (x-4)[(2x+5)+(x-5)]=0\)
\(\Leftrightarrow (x-4).3x=0\)
\(\Rightarrow \left[\begin{matrix} x-4=0\\ 3x=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=4\\ x=0\end{matrix}\right.\)
Bài 2:
a: \(\Leftrightarrow\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
\(1,\left(x-4\right)^2-36=0\)
\(\Leftrightarrow\left(x-4-6\right)\left(x-4+6\right)=0\)
\(\Leftrightarrow\left(x-10\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=10\\x=-2\end{matrix}\right.\)
\(2,x^2-25-\left(x+5\right)^2\)
\(=\left(x-5\right)\left(x+5\right)-\left(x+5\right)^2\)
\(=\left(x+5\right)\left(x-5-x-5\right)\)
\(=-10\left(x+5\right)\)
\(3,\left(2x-3\right)^2=\left(x+5\right)^2\)
\(\Leftrightarrow\left(2x-3\right)^2-\left(x+5\right)^2=0\)
\(\Leftrightarrow\left(2x-3-x-5\right)\left(2x-3+x+5\right)=0\)
\(\Leftrightarrow\left(x-8\right)\left(3x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-\dfrac{2}{3}\end{matrix}\right.\)
\(5,\left(x+8\right)^2=191\)
\(\Leftrightarrow\left(x+8\right)^2-191=0\)
\(\Leftrightarrow\left(x+8-\sqrt{191}\right)\left(x+8+\sqrt{191}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{191}-8\\x=-\sqrt{191}-8\end{matrix}\right.\)
\(6,x^2+4-\left(x-2\right)^2=0\)
\(\Leftrightarrow x^2+4-x^2+4x-4=0\)
\(\Leftrightarrow4x=0\Leftrightarrow x=0\)
Bài 1:
1. \(x-8=3-2\left(x+4\right)\)
\(x-8=3-2x-8\)
\(3x=3\Rightarrow x=1\)
2. \(2\left(x+3\right)-3\left(x-1\right)=2\)
\(2x+6-3x+3=2\)
\(-x+9=2\Rightarrow x=7\)
3. \(4\left(x-5\right)-\left(3x-1\right)=x-19\)
\(4x-20-3x+1=x-19\)
\(0x=0\Rightarrow x=0\)
4. \(7-\left(x-2\right)=5\left(2x-3\right)\)
\(7-x+2=10x-15\)
\(-11x=-24\Rightarrow x=\frac{24}{11}\)
5. \(32-4\left(0,5y-5\right)=3y+2\)
\(32-2y+20=3y+2\)
\(-5y=-50\Rightarrow y=10\)
6. \(3\left(x-1\right)-x=2x-3\)
\(3x-3-x=2x-3\)
\(0x=0\Rightarrow x=0\)
Bài 2:
1. \(\frac{2-x}{3}=\frac{3-2x}{5}\)
\(\frac{\left(2-x\right)5}{15}-\frac{\left(3-2x\right)3}{15}=0\)
\(\frac{10-5x-9+6x}{15}=0\)
\(x+1=0\Rightarrow x=-1\)
2. \(\frac{3-4x}{4}=\frac{x+2}{5}\)
\(\frac{5\left(3-4x\right)}{20}-\frac{4\left(x+2\right)}{20}=0\)
\(\frac{15-20x-4x-8}{20}=0\)
\(7-24x=0\)
\(24x=7\Rightarrow x=\frac{7}{24}\)