K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2022

`Answer:`

\(C=-\frac{1}{3}.\left(1+2+3\right)-\frac{1}{4}.\left(1+2+3+4\right)-...-\frac{1}{50}.\left(1+2+3+...+50\right)\)

\(\Rightarrow C=-[\frac{1}{3}.\left(1+2+3\right)+\frac{1}{4}.\left(1+2+3+4\right)+...+\frac{1}{50}.\left(1+2+3+...+50\right)]\)

Ta có: 

\(\frac{3.4}{2}=1+2+3\)

\(\frac{4.5}{2}=1+2+3+4\)

...

\(\frac{50.51}{2}=1+2+3+...+50\)

\(\Rightarrow C=-[\frac{1}{3}.\frac{3.4}{2}+\frac{1}{4}.\frac{4.5}{2}+...+\frac{1}{50}.\frac{50.51}{2}]\)

\(\Rightarrow C=-\left(\frac{4}{2}+\frac{5}{2}+...+\frac{51}{2}\right)\)

\(\Rightarrow C=-\frac{1}{2}.\left(4+5+...+51\right)\)

Đặt \(D=4+5+...+51\)

\(=\left(51+4\right).[\left(51-4\right):1+1]:2\)

\(=55.48:2\)

\(=1320\)

\(\Rightarrow C=-\frac{1}{2}.1320\)

\(\Rightarrow C=-660\)

\(E=-\dfrac{1}{3}\cdot\left(1+2+3\right)-\dfrac{1}{4}\left(1+2+3+4\right)-...-\dfrac{1}{50}\left(1+2+3+...+50\right)\)

\(=\dfrac{-1}{3}\cdot\dfrac{3\cdot4}{2}-\dfrac{1}{4}\cdot\dfrac{4\cdot5}{2}-...-\dfrac{1}{50}\cdot\dfrac{50\cdot51}{2}\)

\(=\dfrac{-4}{2}-\dfrac{5}{2}-...-\dfrac{51}{2}\)

\(=\dfrac{-\left(4+5+...+51\right)}{2}\)

\(=\dfrac{-\left(51+4\right)\cdot\dfrac{48}{2}}{2}=-\dfrac{1320}{2}=-660\)

15 tháng 5 2018
https://i.imgur.com/Ubve9ba.jpg
5 tháng 5 2019

bạn ghi rất kho hiểu nên mình khuyên bạn ghi lại trên word rồi cop vào đây

12 tháng 3 2018

=> \(A=\frac{\left(\frac{49}{1}+\frac{48}{2}+...+\frac{1}{49}\right)}{50}=\frac{49}{50.1}+\frac{48}{50.2}+...+\frac{1}{50.49}\)

=> \(A=\frac{50-1}{50.1}+\frac{50-2}{50.2}+...+\frac{50-49}{50.49}\)

=> \(A=\left(\frac{50}{50.1}+\frac{50}{50.2}+...+\frac{50}{50.49}\right)-\left(\frac{1}{50.1}+\frac{2}{50.2}+...+\frac{49}{50.49}\right)\)

=> \(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{49}\right)-\left(\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\right)\) ( có 49 số 1/50 )

=> \(A=1+\frac{1}{2}+...+\frac{1}{49}-\frac{49}{50}=\left(1-\frac{49}{50}\right)+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{49}\)

=> \(A=\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\)

Vậy A không phải là số tự nhiên