Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M=1/10 + 1/15 + 1/21 +....+ 1/120
M=2/20 +2/30+2/42+....+2/240
M=2/4.5 + 2/5.6 + 2/6.7 +.....+ 2/15.16
M=2.(1/4.5 +......+ 1/15.16)
M=2.(1/4 -1/5 +1/5 - 1/6 +.....+ 1/15 - 1/16)
M=2.(1/4 - 1/16)
M=2.(4/16 - 1/16)
M=2. 3/16
M=6/16=3/8
Có 1/3 = 8/24 < 9/24 = 3/8 =>1/3<M
Có 1/2 = 4/8>3/8 =>1/2 >M
=> 1/3 < M < 1/2
À mình quên chỗ 1/5 phải là 1/15 nha bạn
Ta có:
\(C=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}\)
\(C.\frac{1}{2}=\left(\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}\right).\frac{1}{2}\)
\(C.\frac{1}{2}=\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{240}\)
\(\frac{1}{2}C=\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+..+\frac{1}{15.16}\)
\(\frac{1}{2}C=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{15}-\frac{1}{16}\)
\(\frac{1}{2}C=\frac{1}{4}-\frac{1}{16}=\frac{3}{16}\)
\(\Rightarrow C=\frac{3}{8}\)
\(A=\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+...+\frac{2}{399}\)
\(=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+....+\frac{2}{19.21}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{19}-\frac{1}{21}\)
\(=\frac{1}{3}-\frac{1}{21}\)
\(=\frac{6}{21}\)
Nhân cả TS và MS các phân số của tổng với 2 thì tổng không thay đổi và ta được:
2/20 + 2/30 + 2/42 + 2/56 + .... + 2/240
= 2/4x5 + 2/5x6 + 2/6x7 + 2/7x8 + ... + 2/15x16
= 2 x (1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7 + 1/7 - 1/8 + ... + 1/15 - 1/16)
= 2 x (1/4 - 1/16)
= 2 x 3/16 = 3/8
C= 1/10 + 1/15 + 1/21...........+1/120
C=1/10-1/120
C=11/12
1/10+1/15+1/21+...+1/120
=2*(1/20+1/30+1/42+...+1/240)
=2*(1/4*5+1/5*6+...+1/15*16)
=2*(1/4-1/5+1/5-1/6+...+1/15-1/16)
=2*[(1/4-1/16)+(1/5-1.5)+...+(1/15-1/15)]
=2[(4/16-1/16)+0+...+0]]
=2*3/16=3/8
Đặt A = \(\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+....+\frac{1}{120}\)
=> A = \(2\left(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+....+\frac{1}{240}\right)\)
= \(2\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+....+\frac{1}{15.16}\right)\)
= \(2\left(\frac{1}{4}-\frac{1}{16}\right)=2\left(\frac{4}{16}-\frac{1}{16}\right)=2.\frac{3}{16}=\frac{3}{8}\)
Đặt A=1/10+1/15+1/21+...+1/120
1/2 A=1/20+1/30+1/42+...+1/240
A=1/4-1/5+1/5-1/6+1/6-1/7+...+1/15-1/16
A=1/4-1/16
A=3/16
Vậy:1/10+1/15+1/21+...+1/120=3/16
\(C=\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+...+\frac{2}{240}=2\times\left(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{240}\right)\)
\(C=2\times\left(\frac{1}{4\times5}+\frac{1}{5\times6}+\frac{1}{6\times7}+...+\frac{1}{15\times16}\right)\)
\(C=2\times\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{15}-\frac{1}{16}\right)=2\times\left(\frac{1}{4}-\frac{1}{16}\right)=\frac{3}{8}\)
Ta có: \(B=\frac{1}{10}+\frac{1}{15}+...+\frac{1}{120}\)
\(\Rightarrow B=\frac{2}{20}+\frac{2}{30}+...+\frac{2}{240}\)
\(\Rightarrow B=2.\left(\frac{1}{20}+\frac{1}{30}+...+\frac{1}{240}\right)\)
\(\Rightarrow B=2.\left(\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{15.16}\right)\)
\(\Rightarrow B=2.\left(\frac{1}{4}-\frac{1}{16}\right)\)
\(\Rightarrow B=2.\frac{3}{16}\)
\(\Rightarrow B=\frac{3}{8}\)
Vậy \(B=\frac{3}{8}\)
C=220 +230 +242 +...+2240 =2×(120 +130 +142 +...+1240 )
C=2×(14×5 +15×6 +16×7 +...+115×16 )
1/10=2/20=2/(4.5)
1/15=2/30=2/(5.6)
1/21=2/42=2/(6.7)
....
1/120=2/240=2/(15.16)
=> C=1/10+1/15+...+1/120=2[1/(4.5)+1/(5.6)+...+1/(15.16)
=2[1/4-1/16)=2(3/16)=3/8
nhân cả 2 vế với 2 ta có
2C=1/20+1/30+1/42+....+1/240
2C=1/4X5+1/5X6+1/6X7+....+1/15X16
2C=1/4-1/5+1/5-1/6+1/6-1/7+...+1/15-1/16
2C=1/4-1/16 (khử liên tiếp)
2C=3/16
C=3/16:2
C=3/32