\(\dfrac{1}{2}\) + \(\dfrac{1}{2^2}\) + 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(C=1+\dfrac{1}{2}+...+\dfrac{1}{2^{100}}\)

=>\(2C=2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{99}}\)

=>\(2C-C=2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{99}}-1-\dfrac{1}{2}-...-\dfrac{1}{2^{100}}\)

=>\(C=2-\dfrac{1}{2^{100}}=\dfrac{2^{101}-1}{2^{100}}\)

31 tháng 3 2024

Cái này tính nhanh nhé!

30 tháng 3 2018

các bạn ơi giúp mìh với mìh đag cần gấp ai nhanh và đúng thì mih tick cho

12 tháng 3 2017

Bài 2:

Ta có: \(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};....;\dfrac{1}{100^2}< \dfrac{1}{99.100}\)

\(\Rightarrow A< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}=1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}=2-\dfrac{1}{100}< 2\)

Vậy A < 2

Bài 3:

D = \(\left(1-\dfrac{1}{2}\right).\left(1-\dfrac{1}{3}\right)....\left(1-\dfrac{1}{2015}\right)\)

\(=\dfrac{1}{2}.\dfrac{2}{3}......\dfrac{2014}{2015}\)

\(=\dfrac{1.2......2014}{2.3......2015}=\dfrac{1}{2015}\)

Bài 4:

A = \(\dfrac{3}{4}.\dfrac{8}{9}.\dfrac{15}{16}......\dfrac{899}{900}\)

\(=\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}.\dfrac{3.5}{4.4}........\dfrac{29.31}{30.30}\)

\(=\dfrac{1.2.3......29}{2.3.4.......30}.\dfrac{3.4.5......31}{2.3.4.....30}\)

\(=\dfrac{1}{30}.\dfrac{31}{2}=\dfrac{31}{60}\)

20 tháng 3 2017

a , \(\left(\dfrac{-2}{3}+1\dfrac{1}{4}-\dfrac{1}{6}\right):\dfrac{-24}{10}\)

=\(\left(\dfrac{-2}{3}+\dfrac{5}{4}-\dfrac{1}{6}\right):\dfrac{-12}{5}\)

=\(\left(\dfrac{-8}{12}+\dfrac{15}{12}-\dfrac{2}{12}\right)\cdot\dfrac{-5}{12}\)

=\(\dfrac{5}{12}\cdot\dfrac{-5}{12}=\dfrac{-25}{144}\)

b , \(\dfrac{13}{15}\cdot0,25\cdot3+\left(\dfrac{8}{15}-1\dfrac{19}{60}\right)1\dfrac{23}{24}\)

=\(\dfrac{13}{15}\cdot\dfrac{1}{4}\cdot3+\left(\dfrac{8}{15}-\dfrac{79}{60}\right)\cdot\dfrac{57}{24}\)

=\(\dfrac{13}{20}-\dfrac{47}{60}\cdot\dfrac{57}{24}\)

=\(\dfrac{13}{20}-\dfrac{893}{480}=\dfrac{312}{480}-\dfrac{893}{480}=\dfrac{-581}{480}\)

c , \(\left(\dfrac{12}{32}+\dfrac{5}{-20}-\dfrac{10}{24}\right):\dfrac{2}{3}\)

=\(\left(\dfrac{180}{480}-\dfrac{120}{480}-\dfrac{200}{480}\right)\cdot\dfrac{3}{2}\)

= \(\dfrac{-7}{24}\cdot\dfrac{3}{2}=\dfrac{-7}{16}\)

d , \(4\dfrac{1}{2}:\left(2,5-3\dfrac{3}{4}\right)+\left(-\dfrac{1}{2}\right)\)

=\(\dfrac{9}{2}:\left(\dfrac{5}{2}-\dfrac{15}{4}\right)-\dfrac{1}{2}\)

=\(\dfrac{9}{2}:\dfrac{-5}{4}-\dfrac{1}{2}=\dfrac{9}{2}\cdot\dfrac{-4}{5}-\dfrac{1}{2}=\dfrac{-18}{5}-\dfrac{1}{2}=\dfrac{-41}{10}\)

e , \(\dfrac{-5}{2}:\left(\dfrac{3}{4}-\dfrac{1}{2}\right)=\dfrac{-5}{2}\left(\dfrac{3}{4}-\dfrac{2}{4}\right)\)

=\(\dfrac{-5}{2}:\dfrac{1}{4}=\dfrac{-5}{2}\cdot4=-10\)

21 tháng 3 2017

2) Tinh nhanh:

a) \(\dfrac{5}{23}\) . \(\dfrac{17}{26}\) + \(\dfrac{5}{23}\) . \(\dfrac{10}{26}\) - \(\dfrac{5}{23}\)

= \(\dfrac{5}{23}\) . \(\left(\dfrac{17}{26}+\dfrac{10}{26}-1\right)\)

= \(\dfrac{5}{23}\) . \(\left(\dfrac{27}{26}-1\right)\) = \(\dfrac{5}{23}\) . \(\dfrac{1}{26}\)

= \(\dfrac{5}{598}\)

21 tháng 3 2017

b) \(\dfrac{1}{7}.\dfrac{5}{9}+\dfrac{5}{9}.\dfrac{2}{7}+\dfrac{5}{9}.\dfrac{1}{7}+\dfrac{5}{9}.\dfrac{3}{7}\)

= \(\dfrac{5}{9}.\left(\dfrac{1}{7}+\dfrac{2}{7}+\dfrac{1}{7}+\dfrac{3}{7}\right)\)

= \(\dfrac{5}{9}\) . 1= \(\dfrac{5}{9}\)

26 tháng 4 2017

Ta thấy: \(\dfrac{1}{4^2}=\dfrac{1}{4.4}< \dfrac{1}{2.4}\)

\(\dfrac{1}{6^2}=\dfrac{1}{6.6}< \dfrac{1}{4.6}\)

...............

\(\dfrac{1}{100^2}=\dfrac{1}{100.100}< \dfrac{1}{98.100}\)

=> \(\dfrac{1}{4^2}+\dfrac{1}{6^2}+....+\dfrac{1}{100^2}\) < \(\dfrac{1}{2.4}+\dfrac{1}{4.6}+....+\dfrac{1}{98.100}\)

=> \(\dfrac{1}{4^2}+\dfrac{1}{6^2}+....+\dfrac{1}{100^2}\) < \(\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+...+\dfrac{1}{98}-\dfrac{1}{100}\right)\)

=> \(\dfrac{1}{4^2}+\dfrac{1}{6^2}+....+\dfrac{1}{100^2}\) < \(\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{100}\right)=\dfrac{1}{2}.\dfrac{49}{100}\)\(=\dfrac{49}{200}\)

=> \(\dfrac{1}{2^2}\)+ \(\dfrac{1}{4^2}+\dfrac{1}{6^2}+....+\dfrac{1}{100^2}\) < \(\dfrac{1}{2^2}+\dfrac{49}{200}=\dfrac{99}{200}\)

do: \(\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}< \dfrac{99}{200}< \dfrac{100}{200}=\dfrac{1}{2}\)

=> \(\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}< \dfrac{1}{2}\)

Chúc bn học tốt nha

28 tháng 4 2017

thanks bạn

22 tháng 4 2018

giúp mình đi mà ToT khocroi

a: \(A=\left(\dfrac{-3}{4}+\dfrac{-2}{9}-\dfrac{1}{36}\right)+\left(\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{3}{5}\right)+\dfrac{1}{57}\)

\(=\dfrac{-27-8-1}{36}+\dfrac{5+1+9}{15}+\dfrac{1}{57}\)

=1/57

b: \(B=\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{3}\right)+\left(\dfrac{-1}{5}-\dfrac{5}{7}-\dfrac{3}{35}\right)+\dfrac{1}{41}\)

\(=\dfrac{3+1+2}{6}+\dfrac{-7-25-3}{35}+\dfrac{1}{41}\)

=1/41

c: \(C=\left(\dfrac{-1}{2}-\dfrac{1}{9}-\dfrac{7}{18}\right)+\left(\dfrac{3}{5}+\dfrac{2}{7}+\dfrac{4}{35}\right)+\dfrac{1}{107}\)

=1-1+1/107

=1/107

25 tháng 8 2018

Bài 1

a)\(\left(-\dfrac{2}{3}\right).\dfrac{3}{11}-\left(\dfrac{4}{3}\right)^2.\dfrac{3}{11}\)

\(=\dfrac{3}{11}.\left[\left(-\dfrac{2}{3}\right)-\left(\dfrac{4}{3}\right)^2\right]\)

\(=\dfrac{3}{11}.\left[\left(-\dfrac{2}{3}\right)-\dfrac{4}{3}.\dfrac{4}{3}\right]\)

\(=\dfrac{3}{11}.\left[\left(-2\right).\dfrac{4}{3}\right]\)

\(=\dfrac{3}{11}.\left(-\dfrac{8}{3}\right)\)

\(=-\dfrac{24}{33}\)

a: \(=\dfrac{32}{9}+\dfrac{13}{6}=\dfrac{32\cdot2+13\cdot3}{18}=\dfrac{64+39}{18}=\dfrac{103}{18}\)

b: \(=\dfrac{43}{8}-\dfrac{43}{6}=\dfrac{-43}{24}\)

c:\(=4-2-\dfrac{1}{6}=2-\dfrac{1}{6}=\dfrac{11}{6}\)

d: \(=5+\dfrac{2}{3}+7+\dfrac{1}{2}-3-\dfrac{1}{2}+1+\dfrac{2}{3}\)

\(=10+\dfrac{4}{3}=\dfrac{34}{3}\)

21 tháng 7 2018

a, \(\dfrac{-7}{9}.2\dfrac{3}{4}\)

= \(\dfrac{-7}{9}.\dfrac{11}{4}\)

= \(\dfrac{-77}{36}\)

b, \(\dfrac{2}{3}+\dfrac{1}{3}.\dfrac{-2}{5}\)

= \(\dfrac{2}{3}+\dfrac{-2}{15}\)

= \(\dfrac{10}{15}+\dfrac{-2}{15}\)

= \(\dfrac{-8}{15}\)

c , \(\dfrac{2}{3}-4\left(\dfrac{1}{2}+\dfrac{3}{4}\right)\)

= \(\dfrac{2}{3}-4.\dfrac{5}{4}\)

= \(\dfrac{2}{3}-5\)

= \(\dfrac{-13}{3}\)

d, \(\left(\dfrac{1}{-3}+\dfrac{5}{6}\right).11-7\)

= \(\dfrac{1}{2}\) . 11 - 7

= \(\dfrac{11}{2}-\dfrac{14}{2}\)

= \(\dfrac{-3}{2}\)

e, \(\dfrac{3}{4}.15\dfrac{1}{3}-\dfrac{3}{4}.43\dfrac{1}{3}\)

= \(\dfrac{3}{4}.\left(15\dfrac{1}{3}-43\dfrac{1}{3}\right)\)

= \(\dfrac{3}{4}.-28\)

= \(-21\)