Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{2^2}+\cdot\cdot\cdot+\frac{1}{2018^2}\)<\(\frac{1}{1\cdot2}+\cdot\cdot\cdot+\frac{1}{2017\cdot2018}\)
\(\Rightarrow A\)<\(1-\frac{1}{2}+\cdot\cdot\cdot+\frac{1}{2017}-\frac{1}{2018}\)
\(\Rightarrow A\)<\(1-\frac{1}{2018}\)<\(1\)
\(a.2^{x-1}=16\)
\(2^{x-1}=2^4\)
\(\Rightarrow x-1=4\)
\(x=5\)
\(b.\left(x-1\right)^2=5^2\)
\(\Rightarrow\orbr{\begin{cases}x-1=5\\x-1=-5\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=6\\x=-4\end{cases}}\)
\(c.\left(x-\frac{1}{2}\right)^3=\left(\frac{1}{3}\right)^3\)
\(\Rightarrow x-\frac{1}{2}=\frac{1}{3}\)
\(x=\frac{5}{6}\)
B=(1-2-3+4)+(5-6-7+8)+...+(97-98-99+100)
B=0+0+..+0
B=0
C=2^100-(2^99+2^98+2^97+...+1)
đặt D=2^99+2^98+2^97+...+1
=>D=2^100-1
=>C=2^100-(2^100-1)=1