Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B E C H D K
a) Xét hai tam giác vuông ABD và ACE ta có:
AB = AC (gt)
\(\widehat{A}\) chung
Vậy ΔABD=ΔACE (cạnh huyền-góc nhọn) (1)
b) Từ (1) ⇒AE=AD⇒AE=AD(2 cạnh tương ứng)
Nên ΔAED là tam giác cân
c) Ta có : BD ⊥ AC (gt)
CE ⊥ AB (gt)
Nên BD và CE là hai đường cao của ΔABC
Vì H là giao điểm của hai đường cao BD và CE nên AH cũng là đường cao của ED
Mà trong tam giác cân AED đường cao cũng là đường trung trực nên AH là đường trung trực của ED
d) Xét hai tam giác vuông CDK và CDB ta có :
DK = DB (gt)
CD là cạnh góc vuông chung
Vậy ΔCDK=ΔCDB (cạnh góc vuông-cạnh góc vuông) (2)
Từ (2) ⇒CB=CK(2 cạnh tương ứng) (3)
Từ (1) ⇒ DB = EC (2 cạnh tương ứng)
mà DK = DB (gt)
⇒EC = DK (4)
Xét hai tam giác vuông ECB và DKC ta có:
CB = CK (3)
EC = DK (4)
Vậy ΔECB=ΔDKC (cạnh góc vuông-cạnh huyền) (5)
Từ (5) => \(\widehat{ECB}\)= \(\widehat{DKC}\) ( 2 góc tương ứng)
a)
Xét 2 tam giác vuông ABD và tam giác ACE ta có
AB=AC ( do tam giác ABC là tam giác cân)
Góc A là góc chung
vậy tam giác ABD = tam giác ACE (ch-gn)
Ta có tam giác ABD =tam giác ACE ( chứng minh trên )
từ đó suy ra AD=AE
Nên suy ra tam giác AED là tam giác cân tại A
b)
gọi I là giao điểm của AH và ED
Xét 2 tam giác vuông AEH và tam giác ADH ta có
AE=AD ( chứng minh ở câu a)
góc D = gócE=90*
AH là cạnh chung
do đo tam giác AED = ADH ( c-g-c)
suy ra góc EAH=góc DAH ( do 2 góc tương ứng )
EH =HD ( do hai cạnh tương ứng )
suy ra H là trung điểm của ED (1)
Xét tam giác AEI và tam giác ADI ta có
AE=AD ( chứng minh câu a )
góc EAH=DAH (chứng minh trên )
AI là cạnh chung
Do đó tam giác AEI =tam giác ADI (c-g-c)
suy ra gócEIA= gócAID ( Do 2 góc tương ứng )
mà góc EIA +góc AID =180
Nên góc EIA=AID=90* (2)
tTừ (1) và ( 2) suy ra
AH là trung đểm của ED
CÒN CÂU C MÌNH LÀM SAU
c)
Ta có
AB=AC ( do tam giác ABC là tam giác cân tại A )
Mà AE=AD ( chứng minh câu a )
suy ra EB=DC
Xét 2 tam giác vuông tam giác EBC và tam giác DCB ta có
EB=DC ( chứng minh trên )
BC là cạnh chung
Do đó tam giác EBC=tam giác DCB ( ch-cgv)
suy ra EC=DB ( do hai cạnh tướng ứng )
Mà DK=DB
Suy ra EC=DK
Xét 2 tam giác vuông tam giác EBC và tam giác DCB ta có
EB=DC ( chứng minh trên )
Góc BEC =góc CDB =90*
EC=DK ( chứng minh trên )
do đó tam giác EBC =DCB ( C-G-C )
Suy ra góc ECB=góc DKC ( do hai góc tương ứng)
a) ta có: tam giác ABC cân tại A
=> góc ABC = góc ACB ( tính chất tam giác cân)
mà góc ABC = góc HBD; góc ACB = góc KCE ( đối đỉnh)
=> góc HBD = góc KCE (= góc ABC = góc ACB)
Xét tam giác DHB vuông tại H và tam giác EKC vuông tại K
có: DB = EC (gt)
góc HBD = góc KCE (cmt)
\(\Rightarrow\Delta DHB=\Delta EKC\left(ch-gn\right)\)
=> HB = KC ( 2 cạnh tương ứng)
b) ta có: góc ABC + góc ABH = 180 độ ( kề bù)
góc ACB + góc ACK = 180 độ ( kề bù)
=> góc ABC + góc ABH = góc ACB + góc ACK ( = 180 độ)
=> góc ABH = góc ACK ( góc ABC = góc ACB)
Xét tam giác ABH và tam giác ACK
có: AB = AC (gt)
góc ABH = góc ACK
BH = CK (phần a)
\(\Rightarrow\Delta ABH=\Delta ACK\left(c-g-c\right)\)
\(\Rightarrow\widehat{AHB}=\widehat{AKC}\) ( 2 góc tương ứng)
c) ( Nối H với E)
ta có: \(DH\perp BC⋮H\)
\(EK\perp BC⋮K\)
\(\Rightarrow DH//EK\) ( định lí từ vuông góc đến //)
=> góc DHE = góc KEH ( so le trong)
ta có: tam giác DHB = tam giác EKC ( phần a)
=> DH = EK ( 2 cạnh tương ứng)
Xét tam giác DHE và tam giác KEH
có: DH = KE ( cmt)
góc DHE = góc KEH (cmt)
HE là cạnh chung
\(\Rightarrow\Delta DHE=\Delta KEH\left(c-g-c\right)\)
\(\Rightarrow\widehat{DEH}=\widehat{KHE}\) ( 2 góc tương ứng)
mà góc DEH và góc KHE nằm ở vị trí so le trong
=> HK // DE ( định lí //)
d) ta có: \(\Delta ABH=\Delta ACK\) ( phần b)
=> AH = AK ( 2 cạnh tương ứng)
góc BAH = góc CAK ( 2 góc tương ứng)
=> góc BAH + góc BAC = góc CAK + góc BAC
=> góc HAE = góc KAD
ta có: AB = AC; BD = CE
=> AB + BD = AC + CE
=> AD = AE
Xét tam giác AHE và tam giác AKD
có: AE = AD (cmt)
góc HAE = góc KAD (cmt)
AH = AK ( cmt)
\(\Rightarrow\Delta AHE=\Delta AKD\left(c-g-c\right)\)
a) Xét \(\Delta ABD\)và \(\Delta ACE\)có:
\(\widehat{A}:chung\)
\(\Delta ABC\)cân => AB = AC ( ĐL )
\(\widehat{ADB}=\widehat{ACE}=90^0\)(gt)
=> \(\Delta ABD=\Delta ACE\) ( cạnh huyền - góc nhọn ) ( ĐPCM ) (1)
b) Từ ( 1 ) => AE = AD ( 2 cạnh tương ứng )
nên \(\Delta AED\)là tam giác cân ( ĐPCM )
A B C E D H a) Vì \(\Delta\)ABC cân tại A nên AB = AC (2 cạnh bên)
\(\widehat{ABC}\) = \(\widehat{ACB}\) (góc đáy) hay \(\widehat{EBC}\) = \(\widehat{DCB}\)
Xét \(\Delta\)BEC vuông tại E và \(\Delta\)CDB vuông tại D có:
BC chung
\(\widehat{EBC}\) = \(\widehat{DCB}\) (chứng minh trên)
=> \(\Delta\)BEC = \(\Delta\)CDB (cạnh huyền - góc nhọn)
=> \(\widehat{ECB}\) = \(\widehat{DBC}\) (2 góc tương ứng)
Ta có:
\(\widehat{ACE}\) + \(\widehat{ECB}\) = \(\widehat{ACB}\)
\(\widehat{ABD}\) + \(\widehat{DBC}\) = \(\widehat{ABC}\)
mà \(\widehat{ECB}\) = \(\widehat{DBC}\) (chứng minh trên) ;
\(\widehat{ABC}\) = \(\widehat{ACB}\) (chứng minh trên)
nên \(\widehat{ABD}\) = \(\widehat{ACE}\)
Xét \(\Delta\)ABD và \(\Delta\)ACE có:
\(\widehat{A}\) chung
AB = AC (chứng minh trên)
\(\widehat{ABD}\) = \(\widehat{ACE}\) (chứng minh trên)
=> \(\Delta\)ABD = \(\Delta\)ACE (g.c.g)
b) Sửa đề rõ hơn: CM \(\Delta\)AED cân
Bài làm:
Vì \(\Delta\)BEC = \(\Delta\)CDB (câu a)
nên BE = CD (2 cạnh tương ứng)
Lại có:
AE + BE = AB
AD + CD = AC
mà AB = AC (đã có); BE = CD (chứng minh trên)
nên AE = AD. Do đó \(\Delta\)AED cân tại A.
c) Chưa rõ đề, chứng minh góc hay là tam giác????
1) đề có phải là: Cho tam giác ABC cân tại A, góc A nhỏ hơn 90 độ. Vẽ BD vuông AC và CE vuông AB. H là giao điểm của BD và CE.
a) Chứng minh Tam giác ABD = Tam giác ACE
b) Chứng minh tam giác AED cân
c, AH là đường trung trực của ED.
D) Trên tia đối DB lấy K sao cho DK = DB. Chứng minh góc ECB = Góc DKC
A B C D E H K
a) Xét tam giác ABD và tam giác ACE có:
\(\widehat{ACE}=\widehat{ABD}\left(cùngphuvoi\widehat{BAC}\right)\Rightarrow\Delta ABD=\Delta ACE\left(g.c.g\right)\hept{\begin{cases}AC=AB\left(\Delta ABCcântạiA\right)\\\widehat{BAC}chung\\\widehat{AEC}=\widehat{ADB}=90^o\end{cases}}\)
b) AE=AD(vì tam giác ABD=tam giác ACE
=> tam giác AED cân tại A
c) Xem lại đề
d) Xét tam giác BCK có:
\(\hept{\begin{cases}BK\perp DC\\BD=DK\end{cases}}\)
=> CD là đường trung trực của BK
=> BC=CK
=> tam giác BCK cân tại C
=>\(\widehat{CBK}=\widehat{CKB}\)
Mà \(\widehat{ECB}=\widehat{CBK}\)(vì góc ABC=góc ACB; góc ABD= góc ACE)
=> góc ECB= góc CKB
3) Đề là:
Cho góc xOy, vẽ tia phân giác Ot của góc xOy. Trên tia Ot lấy điểm M bất kì, trên tia Ox và Oy lần lượt lấy các điểm A và B sao cho OA = OB gọi H là giao điểm của AB và Ot . CHỨNG MINH:
a/ MA = MB
b/ OM là đường trung trực của AB
c/ Cho biết AB = 6cm; OA= 5cm. Tính OH ? (bn viết khó hiểu qá nên mk xem lại trong vở)
Tự vẽ hình!
a/ Xét tam giác OAM và tam giác OBM, có:
Cạnh OM là cạnh chung
OA = OB (gt)
góc AOM = góc BOM ( vì Ot là tia phân giác của góc xOy)
=> Tam giác OAM = tam giác OBM (c.g.c)
=> MA = MB ( 2 cạnh tương ứng)
b/ Ta có: MA = MB (cmt)
=> Tam giác AMB là tam giác cân
=> Góc MAH = góc MBH
Xét tam giác AMH và tam giác BMH, có:
góc MAH = góc MBH ( cmt)
MA = MB ( cmt)
góc AMH = góc BMH ( vì tam giác OAM = tam giác OBM)
=> tam giác AMH và tam giác BMH ( g.c.g)
=> AH = HB ( 2 cạnh tương ứng)
=> H là trung điểm của AB (1)
Vì tam giác AMH = tam giác BMH (cmt)
=>góc MHA = góc MHB ( 2 góc tương ứng)
mà góc MHA + góc MHB = 180 độ ( 2 góc kề bù)
=> góc MHA = góc MHB= 180 độ : 2 = 90 độ
=> MH vuông góc với AB (2)
Từ (1) và (2)
=> MH là đường trung trực của AB
=> OM là đường trung trực của AB ( vì H thuộc OM )
c/ Vì H là trung điểm của AB (cmt)
=> AH =HB = AB : 2 = 6 :2 = 3 (cm)
Xét tam giác OAH vuông tại H có: OA2 = OH2 + AH2 ( định lí Py-ta-go)
=> 52 = OH2 + 32
=> 25 = OH2 + 9
=> OH2 = 25 - 9
=> OH2 = 16
\(\Rightarrow OH=\sqrt{16}\)
\(\Rightarrow OH=4cm\)