\(\sqrt{9-4\sqrt{5}}-\sqrt{5}\)

b ) 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2016

a/ \(\sqrt{9-4\sqrt{5}}-\sqrt{5}=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{5}=\sqrt{5}-2-\sqrt{5}=-2\)

b/ \(\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}=\frac{\sqrt{4-2\sqrt{3}}}{\sqrt{2}}+\frac{\sqrt{4+2\sqrt{3}}}{\sqrt{2}}\)

\(=\frac{\sqrt{\left(\sqrt{3}-1\right)^2}}{\sqrt{2}}+\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{2}}=\frac{\sqrt{3}-1+\sqrt{3}+1}{\sqrt{2}}=\frac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}\)

11 tháng 9 2016

Chị @Hoàng Lê Bảo Ngọc giúp em.

6 tháng 6 2019

a) \(\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\)

\(=\sqrt{3}+1-\left(\sqrt{3}-1\right)\)

\(=\sqrt{3}+1-\sqrt{3}+1\)

\(=2\)

b) \(\sqrt{9-4\sqrt{5}}-\sqrt{9+4\sqrt{5}}\)

\(=\sqrt{5}-2-\left(2+\sqrt{5}\right)\)

\(=\sqrt{5}-2-\sqrt{5}-2\)

\(=-4\)

6 tháng 6 2019

a) \(\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\)

\(=\sqrt{3+2\sqrt{3}+1}-\sqrt{3-2\sqrt{3}+1}\)

\(=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}\)

\(=\sqrt{3}+1-\sqrt{3}+1\)

\(=2\)

b) tương tự

25 tháng 8 2020

Bài làm:

a) \(\sqrt{4-\sqrt{7}}=\frac{\sqrt{2\left(4-\sqrt{7}\right)}}{\sqrt{2}}=\sqrt{\frac{8-2\sqrt{7}}{2}}=\sqrt{\frac{7-2\sqrt{7}+1}{2}}\)

\(=\sqrt{\frac{\left(\sqrt{7}-1\right)^2}{2}}=\frac{\left(\sqrt{7}-1\right)\sqrt{2}}{2}=\frac{\sqrt{14}-\sqrt{2}}{2}\)

b) \(\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\) (đề vậy chứ)

\(=\sqrt{3+2\sqrt{3}+1}-\sqrt{3-2\sqrt{3}+1}\)

\(=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}\)

\(=\sqrt{3}+1-\sqrt{3}+1\)

\(=2\)

c) \(\sqrt{9-4\sqrt{5}}-\sqrt{9+4\sqrt{5}}\)

\(=\sqrt{5-4\sqrt{5}+4}-\sqrt{5+4\sqrt{5}+4}\)

\(=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{\left(\sqrt{5}+2\right)^2}\)

\(=\sqrt{5}-2-\sqrt{5}-2\)

\(=-4\)

d) \(\sqrt{x-2\sqrt{x-1}}\)

\(=\sqrt{\left(x-1\right)-2\sqrt{x-1}+1}\)

\(=\sqrt{\left(\sqrt{x-1}-1\right)^2}\)

\(=\left|\sqrt{x-1}-1\right|\)

24 tháng 6 2019

b) \(\sqrt{\left(7-\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}\)

\(=7-\sqrt{3}+\sqrt{3}+1\)

\(=8\)

26 tháng 7 2018

Giup mình phần 3,4,5 của bài 2 với bài 4 nữa . Helpppp me !!

12 tháng 7 2019

\(A=\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)

\(=\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{\left(2-\sqrt{3}\right)^2}\)

\(=|2+\sqrt{3}|-|2-\sqrt{3}|\)

\(=2+\sqrt{3}-2+\sqrt{3}\)

\(=2\sqrt{3}\)

\(B=\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)

\(=\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}\)

\(=|3+\sqrt{2}|-|3-\sqrt{2}|\)

\(=3+\sqrt{2}-3+\sqrt{2}\)

\(=2\sqrt{2}\)

\(C=\sqrt{17+12\sqrt{2}}+\sqrt{17-12\sqrt{2}}\)

\(=\sqrt{\left(3+2\sqrt{2}\right)^2}+\sqrt{\left(3-2\sqrt{2}\right)^2}\)

\(=|3+2\sqrt{2}|+|3-2\sqrt{2}|\)

\(=3+2\sqrt{2}+3-2\sqrt{2}\)

\(=6\)

\(D=\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)

\(=\sqrt{\left(2+\sqrt{5}\right)^2}-\sqrt{\left(2-\sqrt{5}\right)^2}\)

\(=|2+\sqrt{5}|-|2-\sqrt{5}|\)

\(=2+\sqrt{5}-\sqrt{5}+2\)

\(=4\)

\(E=\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\)

\(=\sqrt{\left(1+\sqrt{5}\right)^2}-\sqrt{\left(1-\sqrt{5}\right)^2}\)

\(=|1+\sqrt{5}|-|1-\sqrt{5}|\)

\(=1+\sqrt{5}-\sqrt{5}+1\)

\(=2\)

12 tháng 7 2019

\(A=\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)

\(A=\sqrt{3}+2+2-\sqrt{3}\)

A = 2 + 2

A = 4

\(B=\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)

\(B=\sqrt{2}+3+3-\sqrt{2}\)

B = 3 + 3

B = 6

\(C=\sqrt{17+12\sqrt{2}}+\sqrt{17-12\sqrt{2}}\)

\(C=3+2\sqrt{2}+3-2\sqrt{2}\)

C = 3 + 3

C = 6

\(D=\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)

\(D=\sqrt{5}+2-\sqrt{5}+2\)

D = 2 + 2

D = 4

\(E=\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\)

\(E=\sqrt{5}+1-\sqrt{5}+1\)

E = 1 + 1

E = 2

30 tháng 10 2019

1. Trục căn thức ở mẫu:

\(A=\frac{1}{1+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{9}}+\frac{1}{\sqrt{9}+\sqrt{13}}+....+\frac{1}{\sqrt{2001}+\sqrt{2005}}+\frac{1}{\sqrt{2005}+\sqrt{2009}}\)

=\(\frac{\sqrt{5}-1}{4}+\frac{\sqrt{9}-\sqrt{5}}{4}+\frac{\sqrt{13}-\sqrt{9}}{4}+....+\frac{\sqrt{2005}-\sqrt{2001}}{4}+\frac{\sqrt{2009}-\sqrt{2005}}{4}\)

\(=\frac{\sqrt{2009}-1}{4}\)

2/ \(x=\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\)

=> \(x^3=\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right)^3\)

\(=3+2\sqrt{2}+3-2\sqrt{2}+3\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right).\sqrt[3]{3+2\sqrt{2}}.\sqrt[3]{3-2\sqrt{2}}\)

\(=6+3x\)

=> \(x^3-3x=6\)

=> \(B=x^3-3x+2000=6+2000=2006\)

30 tháng 10 2019

\(A=\frac{1-\sqrt{5}}{1-5}+\frac{\sqrt{5}-\sqrt{9}}{5-9}+\frac{\sqrt{9}-\sqrt{13}}{9-13}+...+\frac{\sqrt{2001}-\sqrt{2005}}{2001-2005}\)

\(A=\frac{1-\sqrt{5}+\sqrt{5}-\sqrt{9}+\sqrt{9}-\sqrt{13}+...+\sqrt{2001}-\sqrt{2005}}{-4}\)

\(A=\frac{1-\sqrt{2005}}{-4}=\frac{\sqrt{2005}-1}{4}\)