BT9: Tìm x biết

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2023

\(5,4x^2-36=0\\ \Leftrightarrow\left(2x\right)^2-6^2=0\\ \Leftrightarrow\left(2x-6\right)\left(2x+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-6=0\\2x+6=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)

Vậy \(S=\left\{3;-3\right\}\)

\(7,\left(3x+1\right)^2-16=0\\ \Leftrightarrow\left(3x+1\right)^2-4^2=0\\ \Leftrightarrow\left(3x+1-4\right)\left(3x+1+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-3=0\\3x+5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{5}{3}\end{matrix}\right.\)

Vậy \(S=\left\{1;-\dfrac{5}{3}\right\}\)

\(8,\left(2x-3\right)^2-49=0\\ \Leftrightarrow\left(2x-3\right)^2-7^2=0\\ \Leftrightarrow\left(2x-3-7\right)\left(2x-3+7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-10=0\\2x+4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

Vậy \(S=\left\{-2;5\right\}\)

7 tháng 7 2023

Câu 6 đâu ạ?

10 tháng 7 2017

Theo đề bài ta có :

\(\frac{x\left(3-x\right)}{x+1}\cdot\left(x+\frac{\left(3-x\right)}{x+1}\right)=2\)

=> \(\frac{\left(3x-x^2\right)}{x+1}\cdot\frac{\left(3-x+x^2+x\right)}{x+1}=2\)

=> \(\left(3x-x^2\right)\left(x^2+3\right)=2\left(x+1\right)^2\)

=> \(3x^3+9x-x^4-3x^2=2x^2+4x+2\)

=> \(3x^3+\left(9x-4x\right)+\left(-3x^2-2x^2\right)-x^4-2=0\)

=> \(3x^3+5x-5x^2-x^4-2=0\)

=> \(5x\left(1-x\right)+x^3\left(1-x\right)+2\left(x^3-1\right)=0\)

=> \(5x\left(1-x\right)+x^3\left(1-x\right)+2\left(x-1\right)\left(x^2+x+1\right)=0\)

=> \(5x\left(1-x\right)+x^3\left(1-x\right)-2\left(1-x\right)\left(x^2+x+1\right)=0\)

=> \(\left(1-x\right)\left(5x+x^3-2x^2-2x-2\right)=0\)

=> \(\left(1-x\right)\left(3x+x^3-2x^2-2\right)=0\)

=> \(\left(1-x\right)\left(x^3-x^2-x^2+x+2x-2\right)=0\)

=> \(\left(1-x\right)\left(x^2\left(x-1\right)-x\left(x-1\right)+2\left(x-1\right)\right)=0\)

=> \(\left(1-x\right)\left(x-1\right)\left(x^2-x+2\right)=0\)

Ta Thấy :

\(\left(x^2-x+2\right)=\left(x-\frac{1}{2}\right)^2+\frac{7}{4}>0\)

=> \(\hept{\begin{cases}1-x=0\\x-1=0\end{cases}}\)

=> x = 1

6 tháng 12 2015

a. => 3-x2+x2-9=0

=> 3-9=0

=> -6=0 (vô lí)

Vạy ko có x thỏa mãn.

b. => x(x2-1/4)=0

=> x(x-1/2)(x+1/2)=0

=> x=0 hoặc x=1/2 hoặc x=-1/2

c. => x2(x-3)+4(3-x)=0

=> x2(x-3)-4(x-3)=0

=> (x-3)(x2-4)=0

=> (x-3)(x-2)(x+2)=0

=> x=3 hoặc x=2 hoặc x=-2

d. => [(2x-1)-(x+3)].[(2x-1)+(x+3)]=0

=> (2x-1-x-3)(2x-1+x+3)=0

=> (x-4)(3x+2)=0

=> x=4 hoặc 3x+2=0

=> x=4 hoặc x=-2/3.

17 tháng 8 2018

áp dụng cosi a^2+1>=2a tương tự và cộng vế tương ứng suy ra đpcm

17 tháng 8 2018

\(a^2+b^2+2\ge2\left(a+b\right)\)

\(\Leftrightarrow a^2+b^2+2-2\left(a+b\right)\ge0\)

\(\Leftrightarrow a^2+b^2+2-2a-2b\ge0\)

\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2\ge0\)( luôn đúng )

Dấu "=" xảy ra khi :

\(\hept{\begin{cases}b-1=0\\b-1=0\end{cases}}\)\(\Leftrightarrow a=b=1\)

Vậy ...

10 tháng 8 2015

a)x3-13x=0

<=>x(x2-13)=0

<=>x=0 hoặc x2-13=0<=>x2=13<=>x=\(^+_-\sqrt{13}\)

b)2-25x2=0

<=>25x2=2

<=>x2=2/25

<=>x=\(^+_-\sqrt{\frac{2}{25}}\)

c)x2=x+1/4

<=>4x2=4x+1

<=>4x2-4x-1=0

<=>(4x2-4x+1)-2=0

<=>(2x-1)2=2

*)2x-1=\(\sqrt{2}\)

<=>2x=\(\sqrt{2}\)+1

<=>x=(\(\sqrt{2}\)+1)/2

*)2x-1=-\(\sqrt{2}\)

<=>2x=-\(\sqrt{2}\)+1

<=>x=(-\(\sqrt{2}\)+1)/2

d)(2x-1)2=(x+3)2

<=>(2x-1)2-(x+3)2=0

<=>(2x-1-x-3)(2x-1+x+3)=0

<=>(x-4)(3x+2)=0

<=>x-4=0 hoặc 3x+2=0

<=>x=4 hoặc x=-2/3

8 tháng 6 2016

a) 4x2 - 12x + 9 = 0 <=> (2x - 3)2 = 0 <=> 2x - 3 = 0 <=> x = 3/2.KL

b) ( 5 - 2x )( 2x + 7 ) + ( 25 - 4x2 ) = 0 <=> ( 5 - 2x )( 2x + 7 ) + ( 5 + 2x )( 5 - 2x ) = 0 <=> ( 5 - 2x )( 2x + 7 + 5 + 2x ) = 0. KL

<=> ( 5 - 2x )( 4x + 12 ) = 0 <=>\(\orbr{\begin{cases}5-2x=0\\4x+12=0\end{cases}}\)

<=>\(\orbr{\begin{cases}x=2\frac{1}{2}\\x=-3\end{cases}}\)KL.

c) ( x + 3 )( x2 - 3x + 9 ) + ( x + 3 )( x - 3 ) = 0 <=> ( x + 3 )( x2 - 3x + 9 + x - 3 ) = 0 <=> ( x + 3 )( x2 -2x + 6 ) = 0 <=> x + 3 = 0 (vi x2 - 2x + 6 = ( x + 1 )2 + 5 > 0 voi moi x) KL

<=>x=-3.KL

d) [ 2 ( 2x + 7 ) ]2 - [ 3 ( x + 3 ) ]2 = 0 <=> ( 4x + 14 )2 - ( 3x + 9 )2 = 0 <=> ( 4x + 14 + 3x + 9 )( 4x + 14 - 3x -9 ) = 0

<=> ( 7x + 23 )( x + 5 ) = 0 <=> 7x + 23 = 0 hoac x + 5 = 0 <=> x = -23/7 hoac x = -5.KL

2 tháng 5 2016

a) <=> 3x-2=0 hoặc 4x+5=0

1) 3x-2=0 <=> 3x=2 <=> x=2/3

2) 4x+5=0 <=> 4x=-5 <=> x= -5/4

2 tháng 5 2016

a) tách ra 2 cái rồi tính mỗi cái

b) phân tích ra ta đc:

 x2 - 8x + 16 - x2 + 6x -2x + 12=0

sau đó bạn tự giải ra

c) áp dụng hằng đẳng thức ta đc

 (2x+1)(2x-1)=(2x+1)(3x-5)

27 tháng 12 2015

mình chẳng hiểu  gì cả

27 tháng 12 2015

Bài 3:

Ta có:

\(81^8-1=\left(9^2\right)^8-1=\left[\left(3^2\right)^2\right]^8-1=3^{32}-1\)

\(=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

Do đó: 

\(A=3^4-1=80\)