Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
11: \(=\left(1+\dfrac{1}{98}-1-\dfrac{1}{97}+\dfrac{1}{97}-\dfrac{1}{98}\right)\cdot\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}\right)=0\)
12: \(=\dfrac{7}{17}+\dfrac{10}{17}\cdot\left(\dfrac{-6+5}{10}\right)^2\)
\(=\dfrac{7}{17}+\dfrac{10}{17}\cdot\dfrac{1}{100}=\dfrac{7}{17}+\dfrac{1}{170}=\dfrac{71}{170}\)
\(\Rightarrow\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\)
\(\Rightarrow1-\dfrac{1}{x+1}=\dfrac{2016}{2017}\)
\(\Rightarrow\dfrac{1}{x+1}=1-\dfrac{2016}{2017}\)
\(\Rightarrow\dfrac{1}{x+1}=\dfrac{1}{2017}\)
\(\Rightarrow x+1=2017\)
\(\Rightarrow x=2017-1=2016\)
Vậy x = 2016
\(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+\(\dfrac{1}{3.4}\)+\(\dfrac{1}{x\left(x+1\right)}\) = \(\dfrac{2016}{2017}\)
1 - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\)- \(\dfrac{1}{3}\)+\(\dfrac{1}{3}\)- \(\dfrac{1}{4}\)+ \(\dfrac{1}{x\left(x+1\right)}\)=\(\dfrac{2016}{2017}\)
\(\dfrac{3}{4}\)+\(\dfrac{1}{x\left(x+1\right)}\)=\(\dfrac{2016}{2017}\)
\(\dfrac{1}{x\left(x+1\right)}\)= \(\dfrac{2013}{8068}\)
Bn tự lm tiếp nhé!!! Sorry mk đang vội
a)
\(\dfrac{1}{2\cdot3}x+\dfrac{1}{3\cdot4}x+...+\dfrac{1}{49\cdot50}x=1\\ x\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)=1\\ x\left(\dfrac{1}{2}-\dfrac{1}{50}\right)=1\\ x\cdot\dfrac{12}{25}=1\\ x=1:\dfrac{12}{25}=1\cdot\dfrac{25}{12}=\dfrac{25}{12}\)
\(a,\dfrac{3}{4}-1\dfrac{1}{2}+0,5:\dfrac{5}{12}.\)
\(=\dfrac{3}{4}-\dfrac{3}{2}+\dfrac{1}{2}:\dfrac{5}{12}.\)
\(=\dfrac{3}{4}-\dfrac{6}{4}+\dfrac{1}{2}.\dfrac{12}{5}.\)
\(=-\dfrac{3}{4}+\dfrac{12}{10}.\)
\(=-\dfrac{3}{4}+\dfrac{6}{5}.\)
\(=-\dfrac{15}{20}+\dfrac{24}{20}=\dfrac{9}{20}.\)
Vậy.....
\(b,\left(-2\right)^2-1\dfrac{5}{27}.\left(-\dfrac{3}{2}\right)^3.\)
\(=4-1\dfrac{5}{27}.\left(-\dfrac{27}{8}\right).\)
\(=4-\dfrac{32}{27}.\left(-\dfrac{27}{8}\right).\)
\(=4-\left(-4\right).\)
\(=4+4=8.\)
Vậy.....
\(c,\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{99.100}.\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}.\)
\(=\dfrac{1}{2}+\left(\dfrac{1}{3}-\dfrac{1}{3}\right)+\left(\dfrac{1}{4}-\dfrac{1}{4}\right)+...+\left(\dfrac{1}{99}-\dfrac{1}{99}\right)-\dfrac{1}{100}.\)
\(=\dfrac{1}{2}+0+0+...+0-\dfrac{1}{100}.\)
\(=\dfrac{1}{2}-\dfrac{1}{100}.\)
\(=\dfrac{50}{100}-\dfrac{1}{100}=\dfrac{49}{100}.\)
Vậy.....
\(\left(1-\dfrac{2}{2.3}\right)\left(1-\dfrac{2}{3.4}\right)..............\left(1-\dfrac{2}{99.100}\right)\)
\(=\left(\dfrac{6}{2.3}-\dfrac{2}{2.3}\right).\left(\dfrac{12}{3.4}-\dfrac{2}{3.4}\right)..............\left(\dfrac{9900}{99.100}-\dfrac{2}{99.100}\right)\)
\(=\dfrac{4}{2.3}.\dfrac{10}{3.4}..........................\dfrac{9898}{99.100}\)
\(=\dfrac{1.4}{2.3}.\dfrac{2.5}{3.4}..............\dfrac{98.101}{99.100}\)
\(=\dfrac{1.2.3.....98}{2.3......99}.\dfrac{4.5.6.....101}{3.4.......100}\)
\(=\dfrac{1}{99}.\dfrac{101}{3}=\dfrac{101}{297}\)
Câu 2:
a: =>-11/12x=-1/6-3/4=-2/12-9/12=-11/12
=>x=1
b: =>x-42=57-x-50=7-x
=>2x=49
hay x=49/2
d: =>x+1=3 hoặc x+1=-3
=>x=2 hoặc x=-4
e: =>2x+3=5 hoặc 2x+3=-5
=>2x=2 hoặc 2x=-8
=>x=1 hoặc x=-4
a, \(\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)
\(\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]=178\)
\(\left(1-\dfrac{1}{10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]=178\)
\(\dfrac{9}{10}.100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]=178\)
\(90-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]=178\)
\(\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\) \(=-88\)
\(x+\dfrac{206}{100}=\dfrac{-5}{176}\)
\(x=\dfrac{-5}{176}-\dfrac{206}{100}\)
\(x=\dfrac{-9198}{4400}\)
a) \(\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)
\(\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)
\(\left(1-\dfrac{1}{10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)
\(\dfrac{9}{10}.100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)
\(90-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)
\(\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=90-89\)
\(\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=1\)
\(\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)=\dfrac{1}{2}\)
\(x+\dfrac{206}{100}=5\)
\(x=5-\dfrac{206}{100}\)
\(x=\dfrac{147}{50}\)
Vậy \(x=\dfrac{147}{50}\)
\(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{299}{600}\)
\(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{299}{600}\)
\(\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{299}{600}\)
\(\dfrac{1}{x+1}=\dfrac{1}{2}-\dfrac{299}{600}\)
\(\dfrac{1}{x+1}=\dfrac{300}{600}-\dfrac{299}{600}\)
\(\dfrac{1}{x+1}=\dfrac{1}{600}\)
=> x + 1 = 600
x = 600 - 1
x = 599
Vậy x = 599