\(A=-|3x+1|+2\)

b) \(B=-...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2019

Hướng dẫn một câu a nhé! Tất ca những câu khác làm tương tự@@

\(A=-\left|3x+1\right|+2\)

Ta có: \(\left|3x+1\right|\ge0\)

=> \(-\left|3x+1\right|\le0\)

=> \(-\left|3x+1\right|+2\le0+2\)

=> \(-\left|3x+1\right|+2\le2\)

=> \(A\le2\)

Dấu "=" xảy ra khi và chỉ khi : \(\left|3x+1\right|=0\)

                                    hay        \(3x+1=0\)

                                        hay      \(x=-\frac{1}{3}\)

Kết luận: max A= 2 tại x = -1/3

13 tháng 7 2019

a) \(\left|2y-3\right|-\frac{1}{7}=\frac{3}{4}\)

=> \(\left|2y-3\right|=\frac{3}{4}+\frac{1}{7}\)

=> \(\left|2y-3\right|=\frac{25}{28}\)

=> \(\orbr{\begin{cases}2y-3=\frac{25}{28}\\2y-3=-\frac{25}{28}\end{cases}}\)

=> \(\orbr{\begin{cases}2y=\frac{109}{28}\\2y=\frac{59}{28}\end{cases}}\)

=> \(\orbr{\begin{cases}x=\frac{109}{56}\\x=\frac{59}{56}\end{cases}}\)

Tính GTLN

a) Ta có: -|2x - 5| \(\le\)\(\forall\)x

=> -|2x - 5| + 32 \(\le\)32 \(\forall\)x

Hay A \(\le\)32 \(\forall\)x

Dấu "=" xảy ra khi : 2x - 5 = 0 <=> 2x = 5 <=> x = 5/2

Vậy Max của A = 32 tại x = 5/2

13 tháng 7 2019

\(C=\left|y^2+1\right|+2020\)

Ta có: \(y^2\ge0\Leftrightarrow y^2+1\ge1\Leftrightarrow\left|y^2+1\right|\ge1\)

\(\Leftrightarrow C=\left|y^2+1\right|+2020\ge2021\)

Vậy \(C_{min}=2021\)

(Dấu "="\(\Leftrightarrow y^2+1=1\Leftrightarrow y^2=0\Leftrightarrow y=0\))

27 tháng 11 2016

Bài 1:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=kb;c=kd\)

Khi đó: \(\frac{ac}{bd}=\frac{bk.dk}{bd}=k^2\)

           \(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\frac{b^2k^2+d^2k^2}{b^2+d^2}=\frac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\)

Vậy \(\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)

27 tháng 11 2016

bạn giải giúp mik bài 2 và bài 3 đc ko

9 tháng 9 2018

a) \(|x+4|=\frac{7}{3}\) \(\Rightarrow x+4=\pm\left(\frac{7}{3}\right)\)

TH1: \(x+4=\frac{7}{3}\)                                   

\(x=\frac{7}{3}-4=-\frac{5}{3}\)

TH2: \(x+4=-\frac{7}{3}\)

\(x=-\frac{7}{3}-4=-\frac{19}{3}\)

3 tháng 9 2018

\(A=\frac{x^2-10x+36}{x-5}=\frac{x^2-10x+25+9}{x-5}\) \(=\frac{\left(x-5\right)^2+9}{x-5}=x-5+\frac{9}{x-5}\)

để \(A\in Z\)

<=> \(\frac{9}{x-5}\in Z\)mà \(x\in Z\)

=> \(x-5\inƯ\left(9\right)\)

=> \(x-5\in\left(1;-1;3;-3;9;-9\right)\)

=> \(x\in\left(6;4;8;2;14;-4\right)\)

học tốt

21 tháng 12 2019

1)

a) \(A=3.\left|1-2x\right|+2019\)

Ta có \(\left|1-2x\right|\ge0\) \(\forall x.\)

\(\Rightarrow3.\left|1-2x\right|\ge0\) \(\forall x.\)

\(\Rightarrow3.\left|1-2x\right|+2019\ge2019\) \(\forall x.\)

\(\Rightarrow A\ge2019.\)

Dấu '' = '' xảy ra khi:

\(1-2x=0\)

\(\Rightarrow2x=1-0\)

\(\Rightarrow2x=1\)

\(\Rightarrow x=\frac{1}{2}.\)

Vậy \(MIN_A=2019\) khi \(x=\frac{1}{2}.\)

b) \(B=\left(2x^2+1\right)^4-3\)

Ta có \(\left(2x^2+1\right)^4\ge0\) \(\forall x.\)

\(\Rightarrow\left(2x^2+1\right)^4-3\ge-3\) \(\forall x.\)

\(\Rightarrow B\ge-3.\)

Dấu '' = '' xảy ra khi:

\(\left(2x^2+1\right)^4=0\)

\(\Rightarrow2x^2+1=0\)

\(\Rightarrow2x^2=0-1\)

\(\Rightarrow2x^2=-1\)

\(\Rightarrow x^2=-\frac{1}{2}\)

\(\Rightarrow\) Vô lí vì \(x^2\ge0\) \(\forall x.\)

\(\Rightarrow x^2\ne-\frac{1}{2}\)

\(\Rightarrow x\in\varnothing.\)

Vậy \(B\) không có giá trị nhỏ nhất.

Chúc bạn học tốt!

22 tháng 12 2019

Thanks bạn nha

1 tháng 11 2018

1. a, \(2^{x+2}.3^{x+1}.5^x=10800\)

\(2^x.2^2.3^x.3.5^x=10800\)

\(\Rightarrow\left(2.3.5\right)^x.12=10800\)

\(\Rightarrow30^x=\frac{10800}{12}=900\)

\(\Rightarrow30^x=30^2\)

\(\Rightarrow x=2\)

b,\(3^{x+2}-3^x=24\)

\(\Rightarrow3^x\left(3^2-1\right)=24\)

\(\Rightarrow3^x.8=24\)\(\Rightarrow3^x=3^1\Rightarrow x=1\)

2, c, Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)

Dấu bằng xảy ra khi \(ab\ge0\)

Ta có: \(\left|x-2017\right|=\left|2017-x\right|\)

 \(\Rightarrow\left|x-1\right|+\left|2017-x\right|\ge\left|x-1+2017-x\right|\)\(=\left|2016\right|=2016\)

Dấu bằng xảy ra khi \(\left(x-1\right)\left(2017-x\right)\ge0\)\(\Rightarrow2017\ge x\ge1\)

Vậy \(Min_{BT}=2016\)khi \(2017\ge x\ge1\)

d, Áp dụng BĐT \(\left|a\right|-\left|b\right|\le\left|a-b\right|\forall a,b\inℝ\)

Dấu bằng xảy ra khi \(b\left(a-b\right)\ge0\)

Ta có \(B=\left|x-2018\right|-\left|x-2017\right|\le\left|x-2018-x+2017\right|\)

\(\Rightarrow B\le1\)

Dấu bằng xảy ra khi \(\left(x-2017\right)\left[\left(x-2018\right)-\left(x-2017\right)\right]\ge0\)

\(\Rightarrow x\le2017\)

Vậy \(Max_B=1\) khi \(x\le2017\)

1 tháng 11 2018

để BT \(\frac{5}{\sqrt{2x+1}+2}\) nguyên thì \(\sqrt{2x+1}+2\inƯ\left(5\right)\)

suy ra \(\sqrt{2x+1}+2\in\left\{-5;-1;1;5\right\}\)

\(\Rightarrow\sqrt{2x+1}\in\left\{-7;-3;-1;3\right\}\)

Mà \(\sqrt{2x+1}\ge0\) nên \(\sqrt{2x+1}\)chỉ có thể bằng 3

\(\Rightarrow2x+1=9\Rightarrow x=4\)( thỏa mãn điều kiện \(x\ge-\frac{1}{2}\))

Đây là cách lớp 9. Mk đang phân vân ko biết giải theo cách lớp 7 thế nào!!!!

23 tháng 9 2016

ta có \(\frac{1+5y}{5x}\)=\(\frac{1+7y}{4x}\)

=>      4x(1+5y)=5x(1+7y)

=>      4x+20xy=5x+35xy

=>      4x-5x    =35xy-20xy

=>      -x          =15xy

=>      -1          =15y

=>      y           =\(\frac{-1}{15}\)

có y roi thi có thể dễ dàng tìm được x=-2

8 tháng 7 2021

Vì x2 ≥ 0 ∀ x 

=> -5x2 ≤ 0

=> -5x2 + 9 ≤ 9

Để A = -5x2 + 9 nhận giá trị lớn nhất thì -5x2 + 9 = 9 

=> A = 9

Vì ( 3x - 2 )2 ≥ 0

=> 5 - ( 3x - 2 )2 ≤ 5

Để B = 5 - ( 3x - 2 )2 nhận giá trị lớn nhất thì 5 - ( 3x - 2 )2 = 5 

=> B = 5

Để D = \(\frac{\text{2022}}{\left(\text{2 - x}\right)^2+\text{1}}\)nhận giá trị lớn nhất thì ( 2 - x )2 + 1 nhận giá trị nhỏ nhất

Mà ( 2 - x )2 + 1 ≠ 0

=> ( 2 - x )2 + 1 = 1

=> D = \(\frac{\text{2022}}{\left(\text{2 - x}\right)^2+\text{1}}=\frac{\text{2022}}{\text{1}}\)= 2022 

8 tháng 7 2021

Ta có \(-5x^2\le0\Leftrightarrow-5x^2+9\le9\)  

=> Max A = 9 

Dấu "=" xảy ra <=> x2 = 0 => x = 0

Vậy Max A = 9 <=> x = 0

b) Ta có \(-\left(3x-2\right)^2\le0\forall x\Rightarrow5-\left(3x-2\right)^2\le5\)

=> Max B = 5 

Dấu "=" xảy ra <=> 3x - 2 = 0 <=> x = 2/3

Vậy Max = 5 <=> x = 2/3

c) Ta có \(2x^2+3\ge3\forall x\Rightarrow\frac{1}{2x^2+3}\le\frac{1}{3}\)

=> Max C = 1/3 

Dấu "=" xảy  ra <=> x = 0 => x = 0

Vậy Max C = 1/3 <=> x = 0

d) Ta có \(\left(2-x\right)^2+1\ge1\forall x\Leftrightarrow\frac{2022}{\left(2-x\right)^2+1}\le2022\)

=> Max D = 2022

 Dấu "=" xảy ra <=> 2 - x = 0 => x = 2

Vậy Max D = 2022 <=> x = 2