Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2^{4x+1}-8^{x+2}=0\)\(\Leftrightarrow2^{4x+1}-2^{3\left(x+2\right)}=0\)
\(\Leftrightarrow2^{4x+1}-2^{3x+6}=0\)\(\Leftrightarrow2^{4x+1}=2^{3x+6}\)
\(\Leftrightarrow4x+1=3x+6\)\(\Leftrightarrow4x-3x=6-1\)\(\Leftrightarrow x=5\)
Vậy \(x=5\)
b) \(3^2.9^{2x}=27^{x+3}\)\(\Leftrightarrow3^2.3^{2.2x}=3^{3\left(x+3\right)}\)\(\Leftrightarrow3^2.3^{4x}=3^{3x+9}\)
\(\Leftrightarrow3^{2+4x}=3^{3x+9}\)\(\Leftrightarrow2+4x=3x+9\)\(\Leftrightarrow4x-3x=9-2\)\(\Leftrightarrow x=7\)
Vậy \(x=7\)
c) \(8^{2x}.64^2=16^{x+4}\)\(\Leftrightarrow2^{3.2x}.2^{6.2}=2^{4\left(x+4\right)}\)\(\Leftrightarrow2^{6x}.2^{12}=2^{4\left(x+4\right)}\)
\(\Leftrightarrow2^{6x+12}=2^{4x+16}\)\(\Leftrightarrow6x+12=4x+16\)\(\Leftrightarrow6x-4x=16-12\)
\(\Leftrightarrow2x=4\)\(\Leftrightarrow x=2\)
Vậy \(x=2\)
Cậu làm đúng câu a;c rồi còn câu b sai nhé.
Cậu thử lại đi, kết quả câu b sai.
x chia hết cho d ko suy ra 2x+2 chia hết cho d.
a ) \(\left(x+1\right)^2-3\left(x+1\right)^2=-8\)
\(\Leftrightarrow\left(x+1\right)^2.\left(1-3\right)=-8\)
\(\Leftrightarrow-2\left(x+1\right)^2=-8\)
\(\Leftrightarrow\left(x+1\right)^2=4\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=2\\x+1=-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
Vậy .......
b ) \(x^2-7x=4-7\left(x-3\right)\)
\(\Leftrightarrow x^2-7x-4+7x-21=0\)
\(\Leftrightarrow x^2-25=0\)
\(\Leftrightarrow x^2=25\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\)
Vậy ........
c ) \(\left(2x+1\right)^2-3x+3=4-3\left(x+1\right)\)
\(\Leftrightarrow\left(2x+1\right)^2-3\left(x-1\right)+3\left(x-1\right)=4\)
\(\Leftrightarrow\left(2x+1\right)^2=4\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=2\\2x+1=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
Vậy......
b. x2 - 7x = 4 - 7(x-3)
=> x2 - 7x = 4 - 7x +21
=> x2 - 7x + 7x = 25
=> x2 = 25
=> \(\left[{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\)
c.
a) \(A=1,7+\left|3,4-x\right|\ge1,7\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left|3,4-x\right|=0\Rightarrow x=3,4\)
Vậy Min(A) = 1,7 khi x = 3,4
b) \(B=\left|x+2,8\right|-3,5\ge-3,5\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left|x+2,8\right|=0\Rightarrow x=-2,8\)
Vậy Min(B) = -3,5 khi x = -2,8
c) \(C=3,7+\left|4,3-x\right|\ge3,7\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left|4,3-x\right|=0\Rightarrow x=4,3\)
Vậy Min(C) = 3,7 khi x = 4,3
4a) \(\frac{-2}{3}x=\frac{3}{10}-\frac{1}{5}=\frac{1}{10}\)
\(\Leftrightarrow x=\frac{1}{10}:\frac{-2}{3}=\frac{1}{10}.\frac{3}{-2}=\frac{3}{-20}\)
Vậy x=\(\frac{3}{-20}\)
b) \(\frac{2}{3}x-\frac{3}{2}x=\frac{5}{12}\)
\(\Leftrightarrow\left(\frac{2}{3}-\frac{3}{2}\right)x=\frac{5}{12}\)
\(\Leftrightarrow\frac{-5}{6}x=\frac{5}{12}\)
\(\Leftrightarrow x=\frac{5}{12}:\frac{-5}{6}=\frac{5}{12}.\frac{6}{-5}=\frac{1}{-2}\)
Vậy x=\(\frac{1}{-2}\)
g)Sửa đề: \(\left|4x-1\right|=\left(-3\right)^2\)
\(\Leftrightarrow\left|4x-1\right|=9\)
\(\Rightarrow\left[{}\begin{matrix}4x-1=9\\4x-1=\left(-9\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=-2\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{5}{2};-2\right\}\)
i) \(\left(x-1^3\right)=125\)
\(\Leftrightarrow x-1=125\)
\(\Leftrightarrow x=125+1=126\)
Vậy x=126
k) \(\left(x+\frac{1}{2}\right).\left(\frac{2}{3}-2x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{1}{2}=0\\\frac{2}{3}-2x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{2}\\x=\frac{1}{3}\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{-1}{2};\frac{1}{3}\right\}\)
a.=\(\dfrac{4^3.9^3.5^44^4.18^2}{4^5.9^5.5^5}\)=\(\dfrac{4^4.9^2.2^2}{4^2.9^2.5}\)=\(\dfrac{4^2.2^2}{5}\)=\(\dfrac{64}{5}\)
Bài 2:
a) (2x+1)3 = 27
(2x+1)3 = 33
=> 2x+1 = 3
=> 2x = 2
=> x = 1
\(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{x.\left(x+2\right)}=\frac{20}{41}\)
\(\Leftrightarrow\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{20}{41}\)
\(\Leftrightarrow\frac{1}{2}.\left(1-\frac{1}{x+2}\right)=\frac{20}{41}\)
\(\Leftrightarrow1-\frac{1}{x+2}=\frac{20}{41}\div\frac{1}{2}\)
\(\Leftrightarrow1-\frac{1}{x+2}=\frac{40}{41}\)
\(\Leftrightarrow\frac{1}{x+2}=1-\frac{40}{41}\)
\(\Leftrightarrow\frac{1}{x+2}=\frac{1}{41}\)
\(\Leftrightarrow x+2=41\)
\(\Leftrightarrow x=41-2\)
\(\Leftrightarrow x=39\)
a, Ta có : \(64^x+4^{3x+2}=17.64\)
=> \(64^x+64^x.16=17.64\)
=> \(17.64^x=17.64\)
=> \(64^x=64\)
=> \(x=1\)
Vậy phương trình có tập nghiệm là \(S=\left\{1\right\}\)
b, Ta có : \(123-2\left(\left|2x-3\right|\right)=41\)
=> \(\left|2x-3\right|=41\)
TH1 : \(2x-3\ge0\left(x\ge\frac{3}{2}\right)\)
=> \(\left|2x-3\right|=2x-3=41\)
=> \(x=22\) ( TM )
TH2 : \(2x-3< 0\left(x< \frac{3}{2}\right)\)
=> \(\left|2x-3\right|=3-2x=41\)
=> \(x=-19\left(TM\right)\)
Vậy phương trình trên có tập nghiệm là \(S=\left\{22,-19\right\}\)
a) \(64^x+4^{3x+2}=17\cdot64\)
\(\Leftrightarrow4^{3x}+4^{3x}.4^2=17.64\)
\(\Leftrightarrow4^{3x}\left(1+4^2\right)=17.64\)
\(\Leftrightarrow4^{3x}=64=4^3\)
\(\Leftrightarrow x=1\)
b) \(123-2\left|2x-3\right|=41\)
\(\Leftrightarrow\left|2x-3\right|=41\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=41\\2x-3=-41\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=22\\x=-19\end{matrix}\right.\)