\(\frac{a-5}{11}\)

Tìm a là số nguyên

tìm x là...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2020

1.a) Sửa lại đề: \(\frac{11}{17}\)ở mẫu chuyển thành \(\frac{11}{7}\)

\(\frac{0,75+0,6-\frac{3}{7}-\frac{3}{13}}{2,75+2,2-\frac{11}{7}-\frac{11}{13}}=\frac{\frac{3}{4}+\frac{3}{5}-\frac{3}{7}-\frac{3}{13}}{\frac{11}{4}+\frac{11}{5}-\frac{11}{7}-\frac{11}{13}}\)\(=\frac{3\left(\frac{1}{4}+\frac{1}{5}-\frac{1}{7}-\frac{1}{13}\right)}{11\left(\frac{1}{4}+\frac{1}{5}-\frac{1}{7}-\frac{1}{13}\right)}=\frac{3}{11}\)

( vì \(\frac{1}{4}+\frac{1}{5}-\frac{1}{7}-\frac{1}{13}\ne0\))

2.a) \(\frac{3}{5}+\frac{3}{2}.x=\frac{-5}{7}\)\(\Leftrightarrow\frac{3}{2}.x=\frac{-5}{7}-\frac{3}{5}\)

\(\Leftrightarrow\frac{3}{2}.x=\frac{-46}{35}\)\(\Leftrightarrow x=\frac{-46}{35}:\frac{3}{2}\)\(\Leftrightarrow x=\frac{-92}{105}\)

Vậy \(x=\frac{-92}{105}\)

b) \(\left(4x-\frac{1}{3}\right).\left(\frac{3}{2}x+\frac{5}{6}\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}4x-\frac{1}{3}=0\\\frac{3}{2}x+\frac{5}{6}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}4x=\frac{1}{3}\\\frac{3}{2}x=\frac{-5}{6}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{12}\\x=\frac{-5}{9}\end{cases}}\)

Vậy \(x=\frac{-5}{9}\)hoặc \(x=\frac{1}{12}\)

5 tháng 6 2019

1.b) \(\left(\left|x\right|-3\right)\left(x^2+4\right)< 0\)

\(\Rightarrow\hept{\begin{cases}\left|x\right|-3\\x^2+4\end{cases}}\) trái dấu

\(TH1:\hept{\begin{cases}\left|x\right|-3< 0\\x^2+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|< 3\\x^2>-4\end{cases}}\Leftrightarrow x\in\left\{0;\pm1;\pm2\right\}\)

\(TH1:\hept{\begin{cases}\left|x\right|-3>0\\x^2+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|>3\\x^2< -4\end{cases}}\Leftrightarrow x\in\left\{\varnothing\right\}\)

Vậy \(x\in\left\{0;\pm1;\pm2\right\}\)

5 tháng 6 2019

Bài 1b) có thể giải gọn hơn nhuư thế này

Bài 1:

a) Ta có: \(\frac{-3}{4}< \frac{a}{12}< \frac{-5}{9}\)

\(\Leftrightarrow\frac{-27}{36}< \frac{3a}{36}< \frac{-20}{36}\)

Suy ra: \(-27< 3a< -20\)

\(\Leftrightarrow3a\in\left\{-26;-25;-24;-23;-22;-21\right\}\)

\(\Leftrightarrow a\in\left\{\frac{-26}{3};\frac{-25}{3};-8;-\frac{23}{3};-\frac{22}{3};-7\right\}\)

\(a\in Z\)

nên \(a\in\left\{-8;-7\right\}\)

12 tháng 7 2017

Bài 2 

e)2001/-2002<0

4587/4565>0

=>4587/4565>2001/-2002

21 tháng 6 2019

Bài 1:

a) \(x=\frac{a+1}{a+9}=\frac{a+9-8}{a+9}=\frac{a+9}{a+9}-\frac{8}{a+9}=1-\frac{8}{a+9}\)

Để \(x\in Z\)thì \(a+9\inƯ\left(8\right)=\left\{-8;-4;-2;-1;1;2;4;8\right\}\)

Vậy \(a\in\left\{-17;-13;-11;-10;-8;-7;-5;-1\right\}\)

b) \(x=\frac{a-1}{a+4}=\frac{a+4-5}{a+4}=\frac{a+4}{a+4}-\frac{5}{a+4}=1-\frac{5}{a+4}\)

Để \(x\in Z\)thì \(a+4\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)

Vậy \(a\in\left\{-9;-5;-3;1\right\}\)

Bài 2:

a) \(t=\frac{3x-8}{x-5}=\frac{3x-15}{x-5}+\frac{7}{x-5}=\frac{3\left(x-5\right)}{x-5}+\frac{7}{x-5}=3+\frac{7}{x-5}\)

Để \(t\in Z\)thì \(x-5\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Vậy \(x\in\left\{-2;4;6;12\right\}\)

b)\(q=\frac{2x+1}{x-3}=\frac{2x-6}{x-3}+\frac{7}{x-3}=\frac{2\left(x-3\right)}{x-3}+\frac{7}{\left(x-3\right)}=2+\frac{7}{x-3}\)

Để \(q\in Z\)thì \(x-3\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Vậy \(x\in\left\{-4;2;4;10\right\}\)

c)\(p=\frac{3x-2}{x+3}=\frac{3x+9}{x+3}-\frac{11}{x+3}=\frac{3\left(x+3\right)}{x+3}-\frac{11}{x+3}=3-\frac{11}{x+3}\)

Để \(p\in Z\)thì \(x+3\inƯ\left(11\right)=\left\{-11;-1;1;11\right\}\)

Vậy \(x\in\left\{-14;-4;-2;8\right\}\)

Bài 3:

Gọi \(d\inƯC\left(2m+9;14m+62\right)\)

\(\Rightarrow\hept{\begin{cases}\left(2m+9\right)⋮d\\\left(14m+62\right)⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}7\left(2m+9\right)⋮d\\\left(14m+62\right)⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\left(14m+63\right)⋮d\\\left(14m+62\right)⋮d\end{cases}}\)

\(\Rightarrow\left[\left(14m+63\right)-\left(14m+62\right)\right]⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯC\left(2m+9;14m+62\right)=1\)

Vậy \(x=\frac{2m+9}{14m+62}\)là p/s tối giản