đơn thức: \(A=\dfrac{1}{18}x^2y.-\dfrac{9}{7}xy^2\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2023

`a, A= 1/18 x^2 y . (-9.7 x y^2)`

\(=\left[\dfrac{1}{18}.\left(-\dfrac{9}{7}\right)\right]\left(x^2.x\right)\left(y.y^2\right)\\ =-\dfrac{1}{14}x^3y^3\)

`b,` Tại  `x=2 ;y=-1`

Ta có : `A=-1/14 x^3 y^3 =-1/14 . 2^3 . (-1)^3= -1/14 . 8 . (-1) = 4/7`

6 tháng 10 2017

Bạn nhân 2 cả 3 câu rồi phân tích ra hằng đẳng thức là được

26 tháng 6 2016

1) a thỏa mãn: a2 + a + 1 = 0, rõ ràng a khác 0. Chia cả 2 vế cho a ta được: \(a+\frac{1}{a}=-1\)

  • Mặt khác ta có: \(\left(a+\frac{1}{a}\right)^3=-1\Rightarrow a^3+3\cdot\left(a+\frac{1}{a}\right)+\frac{1}{a^3}=-1\Rightarrow a^3+\frac{1}{a^3}=2\)
  • \(\Rightarrow\left(a^3+\frac{1}{a^3}\right)^2=4\Rightarrow a^6+\frac{1}{a^6}=2\)\(\Rightarrow\left(a^6+\frac{1}{a^6}\right)\left(a^3+\frac{1}{a^3}\right)=4\Rightarrow a^9+\frac{1}{a^9}+a^3+\frac{1}{a^3}=4\Rightarrow a^9+\frac{1}{a^9}=2\)
  • ... \(\Rightarrow a^{3k}+\frac{1}{a^{3k}}=2\)
  • \(\Rightarrow a^{2013}+\frac{1}{a^{2013}}=2\)

2) Từ: \(x^2+x^2y^2-2y=0\Rightarrow x^2\left(y^2+1\right)=2y\Rightarrow x^2=\frac{2y}{y^2+1}\)

Với mọi y thì: \(\left(y-1\right)^2\ge0\Leftrightarrow2y\le y^2+1\Leftrightarrow\frac{2y}{y^2+1}\le1\)Do đó \(x^2=\frac{2y}{y^2+1}\le1\Rightarrow-1\le x\le1\)(1)

Mặt khác: \(x^3+2y^2-4y+3=0\Leftrightarrow x^3+1+2\left(y-1\right)^2=0\)(2)

Từ (1) => \(x^3+1\ge0\forall x\Rightarrow VT\left(2\right)\ge VP\left(2\right)\forall x;y\)

Để TM (2) thì dấu "=" xảy ra, khi đó x = -1; y = 1

và suy ra \(Q=x^2+y^2=2\)

10 tháng 7 2017

Theo đề bài ta có :

\(\frac{x\left(3-x\right)}{x+1}\cdot\left(x+\frac{\left(3-x\right)}{x+1}\right)=2\)

=> \(\frac{\left(3x-x^2\right)}{x+1}\cdot\frac{\left(3-x+x^2+x\right)}{x+1}=2\)

=> \(\left(3x-x^2\right)\left(x^2+3\right)=2\left(x+1\right)^2\)

=> \(3x^3+9x-x^4-3x^2=2x^2+4x+2\)

=> \(3x^3+\left(9x-4x\right)+\left(-3x^2-2x^2\right)-x^4-2=0\)

=> \(3x^3+5x-5x^2-x^4-2=0\)

=> \(5x\left(1-x\right)+x^3\left(1-x\right)+2\left(x^3-1\right)=0\)

=> \(5x\left(1-x\right)+x^3\left(1-x\right)+2\left(x-1\right)\left(x^2+x+1\right)=0\)

=> \(5x\left(1-x\right)+x^3\left(1-x\right)-2\left(1-x\right)\left(x^2+x+1\right)=0\)

=> \(\left(1-x\right)\left(5x+x^3-2x^2-2x-2\right)=0\)

=> \(\left(1-x\right)\left(3x+x^3-2x^2-2\right)=0\)

=> \(\left(1-x\right)\left(x^3-x^2-x^2+x+2x-2\right)=0\)

=> \(\left(1-x\right)\left(x^2\left(x-1\right)-x\left(x-1\right)+2\left(x-1\right)\right)=0\)

=> \(\left(1-x\right)\left(x-1\right)\left(x^2-x+2\right)=0\)

Ta Thấy :

\(\left(x^2-x+2\right)=\left(x-\frac{1}{2}\right)^2+\frac{7}{4}>0\)

=> \(\hept{\begin{cases}1-x=0\\x-1=0\end{cases}}\)

=> x = 1

22 tháng 6 2018

bài 4: Ta có \(x^2-2y^2=xy\Rightarrow x^2-y^2=xy+y^2\Rightarrow\left(x-y\right)\left(x+y\right)=y\left(x+y\right)\)

\(x-y=y\Rightarrow x=2y\)

thay x=2y vào A ta đc :

A = \(\dfrac{x-y}{x+y}=\dfrac{2y-y}{2y+y}=\dfrac{y}{3y}=\dfrac{1}{3}\)

AH
Akai Haruma
Giáo viên
22 tháng 6 2018

Bài 1:

Ta có: \(x+y+z=0\Rightarrow z=-x-y\Rightarrow z^2=(-x-y)^2\)

\(\Rightarrow x^2+y^2-z^2=x^2+y^2=x^2+y^2-(-x-y)^2=-2xy\)

Hoàn toàn tương tự:

\(y^2+z^2-x^2=-2yz; z^2+x^2-y^2=-2xz\)

Do đó:

\(P=\frac{(x^2+y^2-z^2)(y^2+z^2-x^2)(z^2+x^2-y^2)}{16xyz}=\frac{(-2xy)(-2yz)(-2xz)}{16xyz}=\frac{-xyz}{2}\)

29 tháng 11 2018

\(a,\frac{\left(2x^2+2x\right)\left(x-2\right)^2}{\left(x^3-4x\right)\left(x+1\right)}\)

\(=\frac{2x\left(x+1\right)\left(x-2\right)^2}{x\left(x-2\right)\left(x+2\right)\left(x+1\right)}\)

\(=\frac{2\left(x-2\right)}{x+2}\)

Với \(x=\frac{1}{2}\)

\(\Rightarrow\frac{2\left(x-2\right)}{x+2}=\frac{2\left(\frac{1}{2}-2\right)}{\frac{1}{2}+2}=\frac{2.-\frac{3}{2}}{\frac{5}{2}}=-3.\frac{2}{5}=\frac{-6}{5}\)

b,Do x = -5; y = 10=> y = -2x

Thay y = -2x vào biểu thức ta được

\(\frac{x^3-x^2\left(-2x\right)+x\left(-2x\right)^2}{x^3+\left(-2x\right)^3}\)

\(=\frac{x^3+2x^3+2x^2}{x^3-8x^3}\)

\(=\frac{3x^3+2x^2}{-7x^3}=\frac{3}{-7}+\frac{2}{-7x}\)

Thay x = -5 là đc

10 tháng 12 2018

1.

a) \(x\left(x+4\right)+x+4=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)

b) \(x\left(x-3\right)+2x-6=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)

10 tháng 12 2018

Bài 1:

a, \(x\left(x+4\right)+x+4=0\)

\(\Leftrightarrow x\left(x+4\right)+\left(x+4\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)

Vậy \(x=-4\) hoặc \(x=-1\)

b, \(x\left(x-3\right)+2x-6=0\)

\(\Leftrightarrow x\left(x-3\right)+2\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

Vậy \(x=3\) hoặc \(x=-2\)