Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(\dfrac{15xy}{10x^2y}\)
= \(\dfrac{3.5xy}{2.5xyx}\)
= \(\dfrac{3}{2x}\)
d) \(\dfrac{6x\left(x+5\right)^3}{2x^2\left(x+5\right)}\)
= \(\dfrac{3.2x\left(x+5\right)\left(x+5\right)^2}{x.2x\left(x+5\right)}\)
= \(\dfrac{3\left(x+5\right)^2}{x}\)
a) \(\left(x+\dfrac{1}{2}\right)^2-2x^2\)
\(=x^2+2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-2x^2\)
\(=x^2+x+\dfrac{1}{4}-2x^2\)
\(=-x^2+x+\dfrac{1}{4}\)
b) \(\left(x-2y\right)^2-4y^2\)
\(=x^2-2\cdot x\cdot2y+\left(2y\right)^2-4y^2\)
\(=x^2-4xy+4y^2-4y^2\)
\(=x^2-4xy\)
c) \(\left(x+\dfrac{1}{2}y\right)^3\)
\(=x^3+3\cdot x^2\cdot\dfrac{1}{2}y+3\cdot x+\left(\dfrac{1}{2}y\right)^2+\left(\dfrac{1}{2}y\right)^3\)
\(=x^3+\dfrac{3}{2}x^2y+\dfrac{3}{4}xy^2+\dfrac{1}{8}y^3\)
d) \(\left(2x^2-3y\right)^3\)
\(=\left(2x^2\right)^3-3\cdot\left(2x^2\right)^2\cdot3y+3\cdot2x^2\cdot\left(3y\right)^2-\left(3y\right)^3\)
\(=8x^6-36x^4y+54x^2y^2-27y^3\)
e) \(\left(x^2+y\right)^2-\left(x+y\right)^2\)
\(=\left[\left(x^2\right)^2+2\cdot x^2\cdot y+y^2\right]-\left(x^2+2\cdot x\cdot y+y^2\right)\)
\(=\left(x^4+2x^2y+y^2\right)-\left(x^2+2xy+y^2\right)\)
\(=x^4+2x^2y+y^2-x^2-2xy-y^2\)
\(=x^4+2x^2y-x^2-2xy\)
a: B=1/6x^3y^5
b: Khi x=1 và y=-1 thì B=1/6*1^3*(-1)^5=-1/6
2)
a) \(5x^2y-10xy^2\)
\(=5xy\left(x-2y\right)\)
b) \(3\left(x+3\right)-x^2+9\)
\(=3\left(x+3\right)-\left(x^2-3^2\right)\)
\(=3\left(x+3\right)-\left(x-3\right)\left(x+3\right)\)
\(=\left(x+3\right)\left[3-\left(x-3\right)\right]\)
\(=\left(x+3\right)\left(3-x+3\right)\)
\(=\left(x+3\right)\left(6-x\right)\)
c) \(x^2-y^2+xz-yz\)
\(=\left(x^2-y^2\right)+\left(xz-yz\right)\)
\(=\left(x-y\right)\left(x+y\right)+z\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y+z\right)\)
3)
a) \(A=\dfrac{x^2}{x^2-4}-\dfrac{x}{x-2}+\dfrac{2}{x+2}\)
\(\Leftrightarrow A=\dfrac{x^2}{\left(x-2\right)\left(x+2\right)}-\dfrac{x}{x-2}+\dfrac{2}{x+2}\)
Điều kiện xác định là: \(\left\{{}\begin{matrix}x-2\ne0\Rightarrow x\ne2\\x+2\ne0\Rightarrow x\ne-2\end{matrix}\right.\)
b) \(A=\dfrac{x^2}{x^2-4}-\dfrac{x}{x-2}+\dfrac{2}{x+2}\)
\(\Leftrightarrow A=\dfrac{x^2}{\left(x-2\right)\left(x+2\right)}-\dfrac{x}{x-2}+\dfrac{2}{x+2}\) MTC: \(\left(x-2\right)\left(x+2\right)\)
\(\Leftrightarrow A=\dfrac{x^2}{\left(x-2\right)\left(x+2\right)}-\dfrac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow A=\dfrac{x^2-x\left(x+2\right)+2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow A=\dfrac{x^2-x^2-2x+2x-4}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow A=\dfrac{-4}{\left(x-2\right)\left(x+2\right)}\)
c) Thay \(x=1\) và biểu thức A ta được:
\(\dfrac{-4}{\left(1-2\right)\left(1+2\right)}=\dfrac{-4}{\left(-1\right).3}=\dfrac{-4}{-3}=\dfrac{4}{3}\)
Vậy giá trị của biểu thức A tại \(x=1\) là \(\dfrac{4}{3}\)
a: \(=\dfrac{1-2x+3+2y+2y-4}{6x^3y}=\dfrac{-2x+4y}{6x^3y}=\dfrac{-2\left(x-2y\right)}{6x^3y}=\dfrac{-x+2y}{3x^3y}\)
b: \(=\dfrac{x^2-2+2-x}{x\left(x-1\right)^2}=\dfrac{x\left(x-1\right)}{x\left(x-1\right)^2}=\dfrac{1}{x-1}\)
c: \(=\dfrac{3x+1+x^6-3x}{x^2-3x+1}\)
\(=\dfrac{x^6+1}{x^2-3x+1}\)
d: \(=\dfrac{x^2+38x+4+3x^2-4x-2}{2x^2+17x+1}\)
\(=\dfrac{4x^2+34x+2}{2x^2+17x+1}=2\)
a: C=1/3*36x^4y^4*1/2x^3y=6x^7y^5
b: Khi x=1 và y=-1 thì C=-6