\(B=1\dfrac{1}{2}.1\dfrac{1}{3}.1\dfrac{1}{4}....1\dfrac{1}{99}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2017

\(B=\dfrac{3}{2}\times\dfrac{4}{3}\times\dfrac{5}{4}\times...\times\dfrac{100}{99}\)

\(B=\dfrac{3.4.5.....100}{2.3.4.....99}\)

\(B=\dfrac{100}{2}\)

\(B=50\)

22 tháng 3 2017

hình như sai đề bài thì phải?

26 tháng 10 2017

\(\left(\dfrac{98}{99}+\dfrac{89}{100}+\dfrac{100}{101}\right)\left(\dfrac{1}{12}-\dfrac{1}{3}+\dfrac{1}{4}\right)\\ =\left(\dfrac{98}{99}+\dfrac{89}{100}+\dfrac{100}{101}\right)\left(-\dfrac{1}{4}+\dfrac{1}{4}\right)\\ =\left(\dfrac{98}{99}+\dfrac{89}{100}+\dfrac{100}{101}\right).0\\ =0\)

\(=\left(1-\dfrac{1}{99}-1-\dfrac{1}{97}+\dfrac{1}{97}-\dfrac{1}{98}\right)\cdot\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}\right)\)

\(=\left(-\dfrac{1}{99}-\dfrac{1}{98}\right)\cdot\dfrac{3}{10}=\dfrac{-197\cdot3}{9702\cdot10}=\dfrac{-197}{32340}\)

3 tháng 4 2017

\(\dfrac{1}{12}\). \(\dfrac{37}{39}+\dfrac{1}{12}.\dfrac{2}{39}+\dfrac{1}{4}\)

=\(\dfrac{1}{12}.\left(\dfrac{37}{39}+\dfrac{2}{39}\right)+\dfrac{1}{4}\)

=\(\dfrac{1}{12}.1+\dfrac{1}{4}\)

=\(\dfrac{13}{12}+\dfrac{1}{4}\)

=\(\dfrac{16}{12}\)

22 tháng 3 2017

Ta có:

\(\left(1-\dfrac{1}{5}\right)\left(1-\dfrac{2}{5}\right)\left(1-\dfrac{3}{5}\right)\left(1-\dfrac{4}{5}\right)\left(1-\dfrac{5}{5}\right)...\left(1-\dfrac{9}{5}\right)\)

\(=\)\(\left(1-\dfrac{1}{5}\right)\left(1-\dfrac{2}{5}\right)\left(1-\dfrac{3}{5}\right)\left(1-\dfrac{4}{5}\right)\)0\(...\left(1-\dfrac{9}{5}\right)\)\(=0\)

1: \(=\dfrac{16}{15}\left(-\dfrac{4}{9}+\dfrac{3}{7}\right)+\dfrac{16}{15}\left(\dfrac{4}{7}-\dfrac{5}{9}\right)\)

\(=\dfrac{16}{15}\left(-\dfrac{4}{9}+\dfrac{3}{7}+\dfrac{4}{7}-\dfrac{5}{9}\right)=0\)

2: \(=\dfrac{29}{9}\left(15+\dfrac{4}{7}-8-\dfrac{1}{7}+\dfrac{15}{7}-\dfrac{1}{7}\right)\)

\(=\dfrac{20}{9}\cdot\left(7\cdot\dfrac{18}{7}\right)=\dfrac{20}{9}\cdot18=40\)

BT1: CMR: a) \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}< 1\) b) \(\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+\dfrac{1}{64}+\dfrac{1}{100}+\dfrac{1}{144}+\dfrac{1}{196}< \dfrac{1}{2}\) c) \(\dfrac{1}{3}+\dfrac{1}{30}+\dfrac{1}{32}+\dfrac{1}{35}+\dfrac{1}{45}+\dfrac{1}{47}+\dfrac{1}{50}< \dfrac{1}{2}\) d) \(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}< \dfrac{1}{3}\) e) \(\dfrac{1}{3}<...
Đọc tiếp

BT1: CMR:

a) \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}< 1\)

b) \(\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+\dfrac{1}{64}+\dfrac{1}{100}+\dfrac{1}{144}+\dfrac{1}{196}< \dfrac{1}{2}\)

c) \(\dfrac{1}{3}+\dfrac{1}{30}+\dfrac{1}{32}+\dfrac{1}{35}+\dfrac{1}{45}+\dfrac{1}{47}+\dfrac{1}{50}< \dfrac{1}{2}\)

d) \(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}< \dfrac{1}{3}\)

e) \(\dfrac{1}{3}< \dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}< \dfrac{3}{16}\)

f) \(\dfrac{1}{41}+\dfrac{1}{42}+\dfrac{1}{43}+...+\dfrac{1}{79}+\dfrac{1}{80}>\dfrac{7}{12}\)

BT2: Tính tổng

a) A=\(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}\)

b) E=\(1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+\dfrac{1}{4}\left(1+2+3+4\right)+...+\dfrac{1}{200}\left(1+2+3+...+200\right)\)

BT3: Cho S=\(\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}\)

CMR: 1 < S < 2

1
22 tháng 3 2017

bài này có trong sách Nâng cao và Phát triển bạn nhé

3 tháng 4 2017

1) . \(\dfrac{1}{2}-\left|\dfrac{1}{5}-\dfrac{1}{4}\right|+\left(-\dfrac{1}{3}\right)^2\\ =\dfrac{1}{2}-\left(\dfrac{1}{4}-\dfrac{1}{5}\right)+\dfrac{1}{9}\\ =\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{9}\)

\(=\dfrac{61}{180}\)

2) . \(\dfrac{1}{3}+\dfrac{4}{3}\left(\dfrac{1}{2}-\dfrac{1}{3}\right)+\left(\dfrac{-2}{3}\right)^2\\ =\dfrac{1}{3}+\dfrac{4}{3}\cdot\dfrac{1}{6}+\dfrac{4}{9}\\ =\dfrac{1}{3}+\dfrac{2}{9}+\dfrac{4}{9}\\ =1\)

22 tháng 3 2017

Ta có:\(\left(1-\dfrac{1}{2010}\right)\left(1-\dfrac{2}{2010}\right)\left(1-\dfrac{3}{2010}\right)...\left(1-\dfrac{2010}{2010}\right)\left(1-\dfrac{2011}{2010}\right)\)

=\(\left(1-\dfrac{1}{2010}\right)\left(1-\dfrac{2}{2010}\right)\left(1-\dfrac{3}{2010}\right)....\)0\(\left(1-\dfrac{2011}{2010}\right)=0\)

9 tháng 4 2017

Tại sao lại nhân với 0 hả bạn

22 tháng 3 2017

Gọi \(\dfrac{12}{23}+\dfrac{12}{2323}-\dfrac{121212}{232323}\) là A

Ta sẽ tính biểu thức A.\(\left(\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{7}{12}\right)\)=A.\(\left(\dfrac{7}{12}-\dfrac{7}{12}\right)=0\)

Vậy \(\left(\dfrac{12}{23}+\dfrac{12}{2323}-\dfrac{121212}{232323}\right).\left(\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{7}{12}\right)\)=0